Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

Overview

fwhr-calc-website

This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure. Used in

Built with

  • Python 3.6
  • Dlib
  • Opencv
  • Flask

Getting started

Prerequisites

  1. python version 3.6 with Anaconda distribution (no guarantee for other versions)
    • You can download Anaconda Individual Edition in [here] (https://www.anaconda.com/products/individual)
    • Check your anaconda installation by conda -V
    • Create a virtual environment by conda create -n [name] python=3.6 and activate the venv by conda activate [name]
  2. Clone this repo.
    • git clone https://github.com/haileypark-kr/fwhr-calc-website.git
  3. Microsoft Azure Face Api Key
    1. Create an Azure account and a Cognitive Service Face API resource in Azure Portal. Read [this] (https://docs.microsoft.com/en-us/azure/cognitive-services/face/) documentation.
    2. Generate keys to access your API. (Resource Management > Keys and Endpoint)
    3. Make a file named azure_faceapi_key.conf and paste the first key in the file. (you can change the file name if you want, but make sure you also change .gitignore and config.py) Do not upload this file to GitHub.
    4. Replace the variable FACE_API_ENDPOINT in config.py with your endpoint.
      # config.py
      
      FACE_API_ENDPOINT = "https://eastasia.api.cognitive.microsoft.com"
      

Installation

Install python libraries in this project's root directory.

  • pip install -r requirements.txt
  • Some libraries (dlib) cannot be installed by pip - should be installed using conda with conda install -y -c conda-forge dlib

Usage

There are two ways to run this application.

  • Running a flask web server: If you want to analyze a few facial images with GUI.
  • Running fWHR calcaculating script: If you want to analyze thousands of images

Running a flask web server

  1. Command: python app.py
  2. Open a Chrome browser and enter 127.0.0.1:5001
  3. Select some images and press Submit button.
  4. Wait and do not reload the browser.
  5. Anlysis result will be downloaded shortly (in xlsx format)

Running fWHR calcaculating script

  1. Command: python fWHR_main.py --dataroot [path to the image directory]
  2. Wait
  3. Go to data/output direcetory and get the analysis result file.
Owner
SoohyunPark
Soohyun Park. Interests in computer vision and backend
SoohyunPark
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
Graph InfoClust: Leveraging cluster-level node information for unsupervised graph representation learning

Graph-InfoClust-GIC [PAKDD 2021] PAKDD'21 version Graph InfoClust: Maximizing Coarse-Grain Mutual Information in Graphs Preprint version Graph InfoClu

Costas Mavromatis 21 Dec 03, 2022
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Pose estimation for iOS and android using TensorFlow 2.0

💃 Mobile 2D Single Person (Or Your Own Object) Pose Estimation for TensorFlow 2.0 This repository is forked from edvardHua/PoseEstimationForMobile wh

tucan9389 165 Nov 16, 2022
YOLOv7 - Framework Beyond Detection

🔥🔥🔥🔥 YOLO with Transformers and Instance Segmentation, with TensorRT acceleration! 🔥🔥🔥

JinTian 3k Jan 01, 2023
Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders"

DECA Official code for the ICCV 2021 paper "DECA: Deep viewpoint-Equivariant human pose estimation using Capsule Autoencoders". All the code is writte

23 Dec 01, 2022
Apache Spark - A unified analytics engine for large-scale data processing

Apache Spark Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Scala, Java, Python, and R, and an op

The Apache Software Foundation 34.7k Jan 04, 2023
PyTorch implementation of "Learn to Dance with AIST++: Music Conditioned 3D Dance Generation."

Learn to Dance with AIST++: Music Conditioned 3D Dance Generation. Installation pip install -r requirements.txt Prepare Dataset bash data/scripts/pre

Zj Li 8 Sep 07, 2021
Source code for our CVPR 2019 paper - PPGNet: Learning Point-Pair Graph for Line Segment Detection

PPGNet: Learning Point-Pair Graph for Line Segment Detection PyTorch implementation of our CVPR 2019 paper: PPGNet: Learning Point-Pair Graph for Line

SVIP Lab 170 Oct 25, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
Official implementation of Unfolded Deep Kernel Estimation for Blind Image Super-resolution.

Unfolded Deep Kernel Estimation for Blind Image Super-resolution Hongyi Zheng, Hongwei Yong, Lei Zhang, "Unfolded Deep Kernel Estimation for Blind Ima

Z80 15 Dec 26, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
*ObjDetApp* deploys a pytorch model for object detection

*ObjDetApp* deploys a pytorch model for object detection

Will Chao 1 Dec 26, 2021
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
Secure Distributed Training at Scale

Secure Distributed Training at Scale This repository contains the implementation of experiments from the paper "Secure Distributed Training at Scale"

Yandex Research 9 Jul 11, 2022
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022