Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

Overview

fwhr-calc-website

This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure. Used in

Built with

  • Python 3.6
  • Dlib
  • Opencv
  • Flask

Getting started

Prerequisites

  1. python version 3.6 with Anaconda distribution (no guarantee for other versions)
    • You can download Anaconda Individual Edition in [here] (https://www.anaconda.com/products/individual)
    • Check your anaconda installation by conda -V
    • Create a virtual environment by conda create -n [name] python=3.6 and activate the venv by conda activate [name]
  2. Clone this repo.
    • git clone https://github.com/haileypark-kr/fwhr-calc-website.git
  3. Microsoft Azure Face Api Key
    1. Create an Azure account and a Cognitive Service Face API resource in Azure Portal. Read [this] (https://docs.microsoft.com/en-us/azure/cognitive-services/face/) documentation.
    2. Generate keys to access your API. (Resource Management > Keys and Endpoint)
    3. Make a file named azure_faceapi_key.conf and paste the first key in the file. (you can change the file name if you want, but make sure you also change .gitignore and config.py) Do not upload this file to GitHub.
    4. Replace the variable FACE_API_ENDPOINT in config.py with your endpoint.
      # config.py
      
      FACE_API_ENDPOINT = "https://eastasia.api.cognitive.microsoft.com"
      

Installation

Install python libraries in this project's root directory.

  • pip install -r requirements.txt
  • Some libraries (dlib) cannot be installed by pip - should be installed using conda with conda install -y -c conda-forge dlib

Usage

There are two ways to run this application.

  • Running a flask web server: If you want to analyze a few facial images with GUI.
  • Running fWHR calcaculating script: If you want to analyze thousands of images

Running a flask web server

  1. Command: python app.py
  2. Open a Chrome browser and enter 127.0.0.1:5001
  3. Select some images and press Submit button.
  4. Wait and do not reload the browser.
  5. Anlysis result will be downloaded shortly (in xlsx format)

Running fWHR calcaculating script

  1. Command: python fWHR_main.py --dataroot [path to the image directory]
  2. Wait
  3. Go to data/output direcetory and get the analysis result file.
Owner
SoohyunPark
Soohyun Park. Interests in computer vision and backend
SoohyunPark
This repository contains the code used for Predicting Patient Outcomes with Graph Representation Learning (https://arxiv.org/abs/2101.03940).

Predicting Patient Outcomes with Graph Representation Learning This repository contains the code used for Predicting Patient Outcomes with Graph Repre

Emma Rocheteau 76 Dec 22, 2022
TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

TransPrompt This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Cla

WangJianing 23 Dec 21, 2022
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana

Nathaniel Gibson 4 Oct 08, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Benedek Rozemberczki 188 Dec 29, 2022
deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

deep-table implements various state-of-the-art deep learning and self-supervised learning algorithms for tabular data using PyTorch.

63 Oct 17, 2022
Unofficial implementation of Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segmentation

Point-Unet This is an unofficial implementation of the MICCAI 2021 paper Point-Unet: A Context-Aware Point-Based Neural Network for Volumetric Segment

Namt0d 9 Dec 07, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
Locally cache assets that are normally streamed in POPULATION: ONE

Population One Localizer This is no longer needed as of the build shipped on 03/03/22, thank you bigbox :) Locally cache assets that are normally stre

Ahman Woods 2 Mar 04, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
Learning to Initialize Neural Networks for Stable and Efficient Training

GradInit This repository hosts the code for experiments in the paper, GradInit: Learning to Initialize Neural Networks for Stable and Efficient Traini

Chen Zhu 124 Dec 30, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
Multi-objective gym environments for reinforcement learning.

MO-Gym: Multi-Objective Reinforcement Learning Environments Gym environments for multi-objective reinforcement learning (MORL). The environments follo

Lucas Alegre 74 Jan 03, 2023
Experiments for distributed optimization algorithms

Network-Distributed Algorithm Experiments -- This repository contains a set of optimization algorithms and objective functions, and all code needed to

Boyue Li 40 Dec 04, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
PyTorch implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN in PyTorch PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. * All samples in READM

Taehoon Kim 1k Jan 04, 2023