2021 credit card consuming recommendation

Overview

2021-credit-card-consuming-recommendation

My implementation and sharing of this contest: https://tbrain.trendmicro.com.tw/Competitions/Details/18. I got rank 9 in the Private Leaderboard.

Run My Implementation

Required libs

matplotlib, numpy, pytorch, and yaml. Versions of them are not restricted as long as they're new enough.

Preprocess

python3 data_to_pkl.py
  • The officially provided csv file should be in data dir.
  • Output pkl file is also in data dir.

Feature Extraction

python3 pkl_to_fea_allow_shorter.py
  • See "作法分享" for detailed description of optional parameters.

Training

python3 train_cv_allow_shorter.py -s save_model_dir
  • -s: where you want to save the trained model.

Inference

Generate model outputs

python3 test_cv_raw_allow_shorter.py model_dir max_len
  • model_dir: directory of the trained model.
  • max_len: max number of month considered for each customer.

Merge model outputs

python3 test_cv_merge_allow_shorter.py n_fold_train
  • n_fold_train: number of folds used for training.

作法分享

以下將介紹本競賽所使用的執行環境、特徵截取、模型設計與訓練。

執行環境

硬體方面,初始時使用 ASUS P2440 UF 筆電,含 i7-8550U CPU 及 MX130 顯示卡,主記憶體擴充至 20 GB;後續使用較多特徵及較長期間的資料時,改為使用 AWS p2.xlarge 機器,含 K80 顯示卡以及約 64 GB 主記憶體。AWS 的經費來源是上一個比賽進入複賽拿到的點數,在打完複賽後還有剩下來的部分。

程式語言為 Python 3,未特別指定版本;函式庫則如本說明前半部所示,其中的 matplotlib 為繪圖觀察用,而 yaml 為儲存模型組態用。

特徵截取(附帶資料觀察)與預測目標

我先將欄位分為兩類,依照「訓練資料欄位說明」的順序,從 shop_tag(消費類別)起至 card_other_txn_amt_pct (其他卡片消費金額佔比)止,因為是從每月每類的消費行為而來,且消費行為必然是變動的,因此列為「時間變化類」;而 masts (婚姻狀態)起至最後為止,因所觀察到的每人的婚姻狀態或教育程度等,在比賽資料所截取的兩年間幾乎都不會變化,故列為「時間不變類」,以節省運算及儲存資源。事實上,在「時間不變類」的欄位當中,平均每人用過的不同狀態,平均約為 1.005 至 1.167 種,最多的則為 3 至 5 種。

時間變化類

對於每人每月的消費紀錄,以如下步驟取特徵

  1. 排序出消費金額前 n 大者,最佳成績中使用的 n 為 13。根據觀察,約 99% 的人,其每月消費類別數在 13 以下。
  2. 取該月時間特徵,為待預測月減去該月,共 1 維。
  3. 該月類別特徵共 49 維,若該月該類別消費金額在該月前 n 名中且金額大於 0 者,其特徵值由名次大到小依次為 n, n-1, n-2, …, 1;前 n 名以外或金額小於等於 0 的類別,其特徵值為 0。
  4. 對於前 n 名的每個類別,無論其消費金額皆取以下特徵,共 22 維:txn_cnt, txn_amt, domestic_offline_cnt, domestic_online_cnt, overseas_offline_cnt, overseas_online_cnt, domestic_offline_amt_pct, domestic_online_amt_pct, overseas_offline_amt_pct, overseas_online_amt_pct, card_*_txn_cnt (* = 1, 2, 4, 6, 10, other), card_*_txn_amt_pct (* = 1, 2, 4, 6, 10, other)。
    • 1, 2, 4, 6, 10, other 為所有消費紀錄中,使用次數最多的前六個卡片編號。
  5. 以上共 1 + 49 + 13 * 22 = 336 維

跨月份的取值方式如下圖所示,其中每個圓角方塊代表每人的一個月份的所有消費紀錄,而 N1 為 20 個月,N2 為 4 組,在範圍內會盡可能的取長或多。另,若該月未有消費紀錄,則忽略該月。

時間變化類取值方式

時間不變類

對於每位客戶,僅使用取值範圍內最後消費當月(N1 範圍內的最後一筆)的金額最大的類別所記載的資料來組成特徵。

使用時,以 masts, gender_code, age, primary_card, slam 各自編成 one-hot encoding 或數值型態後組合,共得 20 維,細節說明如下

  • masts: 含缺值共 4 種狀態,4 維。
  • gender_code: 含缺值共 3 種狀態,3 維。
  • age: 含缺值共 10 種狀態,10 維。
  • primary_card: 沒有缺值,共 2 種狀態,2 維。
  • slam: 數值型態,取 log 後做為特徵,1 維。

此部分亦嘗試過其他特徵,但可能是因為維度較大不易訓練(如 cuorg,含缺值共 35 維),或客戶有可能填寫不實(如 poscd),故未取得較好之結果。

預測目標

共 16 維,代表需要預測的 16 個類別,其中下月金額第一名者為 1,第二名者 0.8,第三名者 0.6,第四名以下有購買者 0.2,未購買者 0。

小結

以上取法經去除輸出全部為 0 (即預測目標月份沒有購買行為)之資料後,共約 102 萬組。

模型設計與訓練

本次比賽使用的模型架構如下圖,主體為 BiLSTM + attention,前後加上適量的 linear layers,其中標色部分為 attention 的做用範圍,最後面的 dense layers 之細部架構則為 (dense 128 + ReLU + dropout 0.1) * 2 + dense 16 + Sigmoid。

模型架構

訓練方式為 5 folds cross validation,預測時會將五個模型的結果取平均,再依據平均後的排名輸出前三名的類別。細節參數如下,未提及之參數係依照 pytorch 預設值,未進行修改:

  • Num of epochs: 100 epochs,若 validation loss 連續 10 個 epochs 未創新低,則提前終止該 fold 的訓練。
  • Batch size: 512。
  • Loss: MSE。
  • Optimizer: ADAM with learning rate 0.01。
  • Learning rate scheduler: 每個 epoch 下降為上一次的 0.95 倍,直至其低於 0.0001 為止。
Owner
Wang, Chung-Che
Wang, Chung-Che
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
Official PyTorch implementation of the paper "Self-Supervised Relational Reasoning for Representation Learning", NeurIPS 2020 Spotlight.

Official PyTorch implementation of the paper: "Self-Supervised Relational Reasoning for Representation Learning" (2020), Patacchiola, M., and Storkey,

Massimiliano Patacchiola 135 Jan 03, 2023
Official repository of Semantic Image Matting

Semantic Image Matting This is the official repository of Semantic Image Matting (CVPR2021). Overview Natural image matting separates the foreground f

192 Dec 29, 2022
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
The official implementation of Variable-Length Piano Infilling (VLI).

Variable-Length-Piano-Infilling The official implementation of Variable-Length Piano Infilling (VLI). (paper: Variable-Length Music Score Infilling vi

29 Sep 01, 2022
Official pytorch implementation of Active Learning for deep object detection via probabilistic modeling (ICCV 2021)

Active Learning for Deep Object Detection via Probabilistic Modeling This repository is the official PyTorch implementation of Active Learning for Dee

NVIDIA Research Projects 130 Jan 06, 2023
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
Repo for our ICML21 paper Unsupervised Learning of Visual 3D Keypoints for Control

Unsupervised Learning of Visual 3D Keypoints for Control [Project Website] [Paper] Boyuan Chen1, Pieter Abbeel1, Deepak Pathak2 1UC Berkeley 2Carnegie

Boyuan Chen 34 Jul 22, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
TensorFlow implementation for Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How

Bayesian Modeling and Uncertainty Quantification for Learning to Optimize: What, Why, and How TensorFlow implementation for Bayesian Modeling and Unce

Shen Lab at Texas A&M University 8 Sep 02, 2022
Open AI's Python library

OpenAI Python Library The OpenAI Python library provides convenient access to the OpenAI API from applications written in the Python language. It incl

Pavan Ananth Sharma 3 Jul 10, 2022
Run object detection model on the Raspberry Pi

Using TensorFlow Lite with Python is great for embedded devices based on Linux, such as Raspberry Pi.

Dimitri Yanovsky 6 Oct 08, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Instrument Recognition.

Music Trees Supplementary code for the experiments described in the 2021 ISMIR submission: Leveraging Hierarchical Structures for Few Shot Musical Ins

Hugo Flores García 32 Nov 22, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
The official MegEngine implementation of the ICCV 2021 paper: GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning

[ICCV 2021] GyroFlow: Gyroscope-Guided Unsupervised Optical Flow Learning This is the official implementation of our ICCV2021 paper GyroFlow. Our pres

MEGVII Research 36 Sep 07, 2022