GPU-Accelerated Deep Learning Library in Python

Related tags

Deep Learninghebel
Overview

Hebel

GPU-Accelerated Deep Learning Library in Python

Hebel is a library for deep learning with neural networks in Python using GPU acceleration with CUDA through PyCUDA. It implements the most important types of neural network models and offers a variety of different activation functions and training methods such as momentum, Nesterov momentum, dropout, and early stopping.

I no longer actively develop Hebel. If you are looking for a deep learning framework in Python, I now recommend Chainer.

Models

Right now, Hebel implements feed-forward neural networks for classification and regression on one or multiple tasks. Other models such as Autoencoder, Convolutional neural nets, and Restricted Boltzman machines are planned for the future.

Hebel implements dropout as well as L1 and L2 weight decay for regularization.

Optimization

Hebel implements stochastic gradient descent (SGD) with regular and Nesterov momentum.

Compatibility

Currently, Hebel will run on Linux and Windows, and probably Mac OS X (not tested).

Dependencies

  • PyCUDA
  • numpy
  • PyYAML
  • skdata (only for MNIST example)

Installation

Hebel is on PyPi, so you can install it with

pip install hebel

Getting started

Study the yaml configuration files in examples/ and run

python train_model.py examples/mnist_neural_net_shallow.yml

The script will create a directory in examples/mnist where the models and logs are saved.

Read the Getting started guide at hebel.readthedocs.org/en/latest/getting_started.html for more information.

Documentation

hebel.readthedocs.org

Contact

Maintained by Hannes Bretschneider ([email protected]). If your are using Hebel, please let me know whether you find it useful and file a Github issue if you find any bugs or have feature requests.

Citing

http://dx.doi.org/10.5281/zenodo.10050

If you make use of Hebel in your research, please cite it. The BibTeX reference is

@article{Bretschneider:10050,
  author        = "Hannes Bretschneider",
  title         = "{Hebel - GPU-Accelerated Deep Learning Library in Python}",
  month         = "May",
  year          = "2014",
  doi           = "10.5281/zenodo.10050",
  url           = "https://zenodo.org/record/10050",
}

What's with the name?

Hebel is the German word for lever, one of the oldest tools that humans use. As Archimedes said it: "Give me a lever long enough and a fulcrum on which to place it, and I shall move the world."

Comments
  • Contributing PyCUDA routines

    Contributing PyCUDA routines

    Heya

    I stumbled across this project looking for some PyCUDA routines that operate on matrices per-row or per-column. It seems you have a bunch of handy routines for this, which is awesome, e.g. row-wise maximum, add_vec_to_mat etc.

    Would you be willing to contribute them back to PyCUDA? a lot of these routines seem like they'd definitely be useful more widely. And perhaps offering the contribution might give the PyCUDA guys some inspiration or a kick in the arse to create a more general partial reductions API (like numpy's axis=0 arguments) and broadcasting behaviour for element-wise operations on GPUArrays? (I would attempt this myself but my CUDA-fu is weak)

    Just a thought anyway. I would suggest it to them myself but the licencing is different (GPL vs MIT)

    Cheers!

    opened by mjwillson 6
  • [WIP][HEP3] Implement convolution for DNA sequence

    [WIP][HEP3] Implement convolution for DNA sequence

    I am merging my code for training conv-nets from DNA sequence into Hebel. This should be done by the end of January 2015. Please follow this issue if you are interested in using Hebel for learning from DNA sequence or would like to test it.

    Hebel Enhancement Proposal 
    opened by hannes-brt 3
  • Compiling issues with MacOSX

    Compiling issues with MacOSX

    I am trying to compile in Mac OSX yosemite and it seems hebel is not running. i installed PyCUDA and other libraries needed but stuck at this error.

    $ python hebel_test.py Traceback (most recent call last): File "hebel_test.py", line 18, in hebel.init(0) File "/Users/prabhubalakrishnan/Desktop/hebel/hebel/init.py", line 131, in init from pycuda import gpuarray, driver, curandom File "/Library/Python/2.7/site-packages/pycuda-2014.1-py2.7-macosx-10.10-intel.egg/pycuda/gpuarray.py", line 3, in import pycuda.elementwise as elementwise File "/Library/Python/2.7/site-packages/pycuda-2014.1-py2.7-macosx-10.10-intel.egg/pycuda/elementwise.py", line 34, in from pytools import memoize_method File "/Library/Python/2.7/site-packages/pytools-2014.3.5-py2.7.egg/pytools/init.py", line 5, in from six.moves import range, zip, intern, input ImportError: cannot import name intern

    How to fix?

    opened by olddocks 3
  • Global name 'hidden_inputs' is not defined

    Global name 'hidden_inputs' is not defined

    When running optimizer.run(100), an error occurred: global name 'hidden_inputs' is not defined in line 323 of ./hebel/hebel/models/neurals_net.py

    Where to define the global variable 'hidden_inputs'? Thanks!

    opened by Robert0812 3
  • AttributeError: python: undefined symbol: cuPointerGetAttribute

    AttributeError: python: undefined symbol: cuPointerGetAttribute

    [email protected]:~/github/hebel$ echo $LD_LIBRARY_PATH /usr/local/cuda:/usr/local/cuda/bin:/usr/local/cuda/lib64:/home/ubgpu/torch/install/lib:/home/ubgpu/torch/install/lib [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ python train_model.py examples/mnist_neural_net_shallow.yml Traceback (most recent call last): File "train_model.py", line 39, in run_from_config(yaml_src) File "/home/ubgpu/github/hebel/hebel/config.py", line 41, in run_from_config config = load(yaml_src) File "/home/ubgpu/github/hebel/hebel/config.py", line 92, in load proxy_graph = yaml.load(string, **kwargs) File "/usr/local/lib/python2.7/dist-packages/yaml/init.py", line 71, in load return loader.get_single_data() File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 39, in get_single_data return self.construct_document(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 48, in construct_document for dummy in generator: File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 398, in construct_yaml_map value = self.construct_mapping(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 208, in construct_mapping return BaseConstructor.construct_mapping(self, node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 133, in construct_mapping value = self.construct_object(value_node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 90, in construct_object data = constructor(self, tag_suffix, node) File "/home/ubgpu/github/hebel/hebel/config.py", line 318, in multi_constructor mapping = loader.construct_mapping(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 208, in construct_mapping return BaseConstructor.construct_mapping(self, node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 133, in construct_mapping value = self.construct_object(value_node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 90, in construct_object data = constructor(self, tag_suffix, node) File "/home/ubgpu/github/hebel/hebel/config.py", line 318, in multi_constructor mapping = loader.construct_mapping(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 208, in construct_mapping return BaseConstructor.construct_mapping(self, node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 133, in construct_mapping value = self.construct_object(value_node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 90, in construct_object data = constructor(self, tag_suffix, node) File "/home/ubgpu/github/hebel/hebel/config.py", line 323, in multi_constructor classname = try_to_import(tag_suffix) File "/home/ubgpu/github/hebel/hebel/config.py", line 251, in try_to_import exec('import %s' % modulename) File "", line 1, in File "/home/ubgpu/github/hebel/hebel/layers/init.py", line 17, in from .dummy_layer import DummyLayer File "/home/ubgpu/github/hebel/hebel/layers/dummy_layer.py", line 17, in from .hidden_layer import HiddenLayer File "/home/ubgpu/github/hebel/hebel/layers/hidden_layer.py", line 25, in from ..pycuda_ops import linalg File "/home/ubgpu/github/hebel/hebel/pycuda_ops/linalg.py", line 32, in from . import cublas File "/home/ubgpu/github/hebel/hebel/pycuda_ops/cublas.py", line 47, in import cuda File "/home/ubgpu/github/hebel/hebel/pycuda_ops/cuda.py", line 36, in from cudadrv import * File "/home/ubgpu/github/hebel/hebel/pycuda_ops/cudadrv.py", line 233, in _libcuda.cuPointerGetAttribute.restype = int File "/usr/lib/python2.7/ctypes/init.py", line 378, in getattr func = self.getitem(name) File "/usr/lib/python2.7/ctypes/init.py", line 383, in getitem func = self._FuncPtr((name_or_ordinal, self)) AttributeError: python: undefined symbol: cuPointerGetAttribute [email protected]:~/github/hebel$

    opened by andyyuan78 2
  • OSError: CUDA runtime library not found

    OSError: CUDA runtime library not found

    [email protected]:~/github/hebel$ sudo pip install pyCUDA Requirement already satisfied (use --upgrade to upgrade): pyCUDA in /usr/local/lib/python2.7/dist-packages Requirement already satisfied (use --upgrade to upgrade): decorator>=3.2.0 in /usr/local/lib/python2.7/dist-packages (from pyCUDA) Requirement already satisfied (use --upgrade to upgrade): pytools>=2011.2 in /usr/local/lib/python2.7/dist-packages (from pyCUDA) Requirement already satisfied (use --upgrade to upgrade): pytest>=2 in /usr/local/lib/python2.7/dist-packages (from pyCUDA) Requirement already satisfied (use --upgrade to upgrade): appdirs>=1.4.0 in /usr/local/lib/python2.7/dist-packages (from pytools>=2011.2->pyCUDA) Requirement already satisfied (use --upgrade to upgrade): six in /usr/local/lib/python2.7/dist-packages (from pytools>=2011.2->pyCUDA) Requirement already satisfied (use --upgrade to upgrade): py>=1.4.25 in /usr/local/lib/python2.7/dist-packages (from pytest>=2->pyCUDA) [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ python Python 2.7.6 (default, Mar 22 2014, 22:59:56) [GCC 4.8.2] on linux2 Type "help", "copyright", "credits" or "license" for more information.

    quit() [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ sudo pip install PyCUDA Requirement already satisfied (use --upgrade to upgrade): PyCUDA in /usr/local/lib/python2.7/dist-packages Requirement already satisfied (use --upgrade to upgrade): decorator>=3.2.0 in /usr/local/lib/python2.7/dist-packages (from PyCUDA) Requirement already satisfied (use --upgrade to upgrade): pytools>=2011.2 in /usr/local/lib/python2.7/dist-packages (from PyCUDA) Requirement already satisfied (use --upgrade to upgrade): pytest>=2 in /usr/local/lib/python2.7/dist-packages (from PyCUDA) Requirement already satisfied (use --upgrade to upgrade): appdirs>=1.4.0 in /usr/local/lib/python2.7/dist-packages (from pytools>=2011.2->PyCUDA) Requirement already satisfied (use --upgrade to upgrade): six in /usr/local/lib/python2.7/dist-packages (from pytools>=2011.2->PyCUDA) Requirement already satisfied (use --upgrade to upgrade): py>=1.4.25 in /usr/local/lib/python2.7/dist-packages (from pytest>=2->PyCUDA) [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ echo $PYTHONPATH /usr/local/lib/python2.7/dist-packages [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ [email protected]:~/github/hebel$ python train_model.py examples/mnist_neural_net_shallow.yml Traceback (most recent call last): File "train_model.py", line 39, in run_from_config(yaml_src) File "/home/ubgpu/github/hebel/hebel/config.py", line 41, in run_from_config config = load(yaml_src) File "/home/ubgpu/github/hebel/hebel/config.py", line 92, in load proxy_graph = yaml.load(string, **kwargs) File "/usr/local/lib/python2.7/dist-packages/yaml/init.py", line 71, in load return loader.get_single_data() File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 39, in get_single_data return self.construct_document(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 48, in construct_document for dummy in generator: File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 398, in construct_yaml_map value = self.construct_mapping(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 208, in construct_mapping return BaseConstructor.construct_mapping(self, node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 133, in construct_mapping value = self.construct_object(value_node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 90, in construct_object data = constructor(self, tag_suffix, node) File "/home/ubgpu/github/hebel/hebel/config.py", line 318, in multi_constructor mapping = loader.construct_mapping(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 208, in construct_mapping return BaseConstructor.construct_mapping(self, node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 133, in construct_mapping value = self.construct_object(value_node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 90, in construct_object data = constructor(self, tag_suffix, node) File "/home/ubgpu/github/hebel/hebel/config.py", line 318, in multi_constructor mapping = loader.construct_mapping(node) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 208, in construct_mapping return BaseConstructor.construct_mapping(self, node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 133, in construct_mapping value = self.construct_object(value_node, deep=deep) File "/usr/local/lib/python2.7/dist-packages/yaml/constructor.py", line 90, in construct_object data = constructor(self, tag_suffix, node) File "/home/ubgpu/github/hebel/hebel/config.py", line 323, in multi_constructor classname = try_to_import(tag_suffix) File "/home/ubgpu/github/hebel/hebel/config.py", line 251, in try_to_import exec('import %s' % modulename) File "", line 1, in File "/home/ubgpu/github/hebel/hebel/layers/init.py", line 17, in from .dummy_layer import DummyLayer File "/home/ubgpu/github/hebel/hebel/layers/dummy_layer.py", line 17, in from .hidden_layer import HiddenLayer File "/home/ubgpu/github/hebel/hebel/layers/hidden_layer.py", line 25, in from ..pycuda_ops import linalg File "/home/ubgpu/github/hebel/hebel/pycuda_ops/linalg.py", line 32, in from . import cublas File "/home/ubgpu/github/hebel/hebel/pycuda_ops/cublas.py", line 47, in import cuda File "/home/ubgpu/github/hebel/hebel/pycuda_ops/cuda.py", line 35, in from cudart import * File "/home/ubgpu/github/hebel/hebel/pycuda_ops/cudart.py", line 60, in raise OSError('CUDA runtime library not found') OSError: CUDA runtime library not found

    opened by andyyuan78 1
  • AttributeError: 'NoneType' object has no attribute 'cudaGetErrorString'

    AttributeError: 'NoneType' object has no attribute 'cudaGetErrorString'

    at commit a7f4cbb91c029c344921db76850bf9dc8eb47af4 with python 2.7.6 I try: 'python train_model.py examples/mnist_neural_net_shallow.yml' And i get the following

    Traceback (most recent call last):
      File "train_model.py", line 39, in <module>
        run_from_config(yaml_src)
      File "/Users/epic/Documents/git/hebel/hebel/config.py", line 41, in run_from_config
        config = load(yaml_src)
      File "/Users/epic/Documents/git/hebel/hebel/config.py", line 92, in load
        proxy_graph = yaml.load(string, **kwargs)
      File "/usr/local/lib/python2.7/site-packages/yaml/__init__.py", line 71, in load
        return loader.get_single_data()
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 39, in get_single_data
        return self.construct_document(node)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 48, in construct_document
        for dummy in generator:
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 398, in construct_yaml_map
        value = self.construct_mapping(node)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 208, in construct_mapping
        return BaseConstructor.construct_mapping(self, node, deep=deep)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 133, in construct_mapping
        value = self.construct_object(value_node, deep=deep)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 90, in construct_object
        data = constructor(self, tag_suffix, node)
      File "/Users/epic/Documents/git/hebel/hebel/config.py", line 318, in multi_constructor
        mapping = loader.construct_mapping(node)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 208, in construct_mapping
        return BaseConstructor.construct_mapping(self, node, deep=deep)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 133, in construct_mapping
        value = self.construct_object(value_node, deep=deep)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 90, in construct_object
        data = constructor(self, tag_suffix, node)
      File "/Users/epic/Documents/git/hebel/hebel/config.py", line 318, in multi_constructor
        mapping = loader.construct_mapping(node)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 208, in construct_mapping
        return BaseConstructor.construct_mapping(self, node, deep=deep)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 133, in construct_mapping
        value = self.construct_object(value_node, deep=deep)
      File "/usr/local/lib/python2.7/site-packages/yaml/constructor.py", line 90, in construct_object
        data = constructor(self, tag_suffix, node)
      File "/Users/epic/Documents/git/hebel/hebel/config.py", line 323, in multi_constructor
        classname = try_to_import(tag_suffix)
      File "/Users/epic/Documents/git/hebel/hebel/config.py", line 251, in try_to_import
        exec('import %s' % modulename)
      File "<string>", line 1, in <module>
      File "/Users/epic/Documents/git/hebel/hebel/layers/__init__.py", line 17, in <module>
        from .dummy_layer import DummyLayer
      File "/Users/epic/Documents/git/hebel/hebel/layers/dummy_layer.py", line 17, in <module>
        from .hidden_layer import HiddenLayer
      File "/Users/epic/Documents/git/hebel/hebel/layers/hidden_layer.py", line 25, in <module>
        from ..pycuda_ops import linalg
      File "/Users/epic/Documents/git/hebel/hebel/pycuda_ops/linalg.py", line 32, in <module>
        from . import cublas
      File "/Users/epic/Documents/git/hebel/hebel/pycuda_ops/cublas.py", line 47, in <module>
        import cuda
      File "/Users/epic/Documents/git/hebel/hebel/pycuda_ops/cuda.py", line 35, in <module>
        from cudart import *
      File "/Users/epic/Documents/git/hebel/hebel/pycuda_ops/cudart.py", line 142, in <module>
        _libcudart.cudaGetErrorString.restype = ctypes.c_char_p
    AttributeError: 'NoneType' object has no attribute 'cudaGetErrorString'
    
    opened by epichub 1
  • Report a tiny bug in running example script

    Report a tiny bug in running example script

    Example script data_providers.py imports skdata by
    from skdata.mnist.view import OfficialVectorClassification

    It should be skdata.mnist.views, otherwise errors occur.

    opened by Robert0812 1
  • Missing packages added.

    Missing packages added.

    It's not enough to specify root package (i.e. hebel) in packages argument of setup.py. In order to successfully install hebel, subpackages must be listed as well.

    opened by mnowotka 0
  • docs: fix simple typo, initalized -> initialized

    docs: fix simple typo, initalized -> initialized

    There is a small typo in hebel/layers/hidden_layer.py, hebel/layers/linear_regression_layer.py, hebel/layers/logistic_layer.py, hebel/layers/softmax_layer.py.

    Should read initialized rather than initalized.

    Semi-automated pull request generated by https://github.com/timgates42/meticulous/blob/master/docs/NOTE.md

    opened by timgates42 0
  • Small documentation enhancement request

    Small documentation enhancement request

    Hi there, I really appreciate Hebel. It was a good first step for me to "take the plunge" into using GPU.

    I struggled a bit after going through the example (MNIST) script. In particular, it wasn't clear how to have the model predict new data (i.e., data you don't have targets for).

    The first (small) stumble was what to with the DataProvider. I just put in dummy zero targets. Perhaps targets could be an optional field somehow?

    A more thorny issue was how to actually do the predictions. I couldn't for the life of me figure out how to feed the DataProvider data into the feed_forward without getting the error:

      File "/usr/local/lib/python2.7/dist-packages/hebel/models/neural_net.py", line 422, in feed_forward
        prediction=prediction))
      File "/usr/local/lib/python2.7/dist-packages/hebel/layers/input_dropout.py", line 96, in feed_forward
        return (input_data * (1 - self.dropout_probability),)
    TypeError: unsupported operand type(s) for *: 'MiniBatchDataProvider' and 'float'
    

    This was my original attempt:

    # After loading in the data . . .
    Xv = Xv.astype(np.float32)
    yv = pd.get_dummies(yv).values.astype(np.float32)
    valid_data = MiniBatchDataProvider(Xv, yv, batch_size=5000)
    

    I finally resorted to useing a gpu array which worked:

    from pycuda import gpuarray
    valid_data = gpuarray.to_gpu(Xt)
    y_pred = model.feed_forward(valid_data, return_cache=False, prediction=True).get()
    

    The .get() at the end of the last statement was also something I had to figure out going through code.

    Having an example in the documentation would be helpful.

    opened by walterreade 1
Releases(v0.02.1)
Owner
Hannes Bretschneider
Postdoctoral Fellow in the Blencowe Lab at University of Toronto
Hannes Bretschneider
A Loss Function for Generative Neural Networks Based on Watson’s Perceptual Model

This repository contains the similarity metrics designed and evaluated in the paper, and instructions and code to re-run the experiments. Implementation in the deep-learning framework PyTorch

Steffen 86 Dec 27, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
object detection; robust detection; ACM MM21 grand challenge; Security AI Challenger Phase VII

赛题背景 在商品知识产权领域,知识产权体现为在线商品的设计和品牌。不幸的是,在每一天,存在着非法商户通过一些对抗手段干扰商标识别来逃避侵权,这带来了很高的知识产权风险和财务损失。为了促进先进的多媒体人工智能技术的发展,以保护企业来之不易的创作和想法免受恶意使用和剽窃,因此提出了鲁棒性标识检测挑战赛

65 Dec 22, 2022
Code for the paper "How Attentive are Graph Attention Networks?"

How Attentive are Graph Attention Networks? This repository is the official implementation of How Attentive are Graph Attention Networks?. The PyTorch

175 Dec 29, 2022
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
A web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks

This project is a web porting for NVlabs' StyleGAN2, to facilitate exploring all kinds characteristic of StyleGAN networks. Thanks for NVlabs' excelle

K.L. 150 Dec 15, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance"

Lidar-Segementation An implementation on "Curved-Voxel Clustering for Accurate Segmentation of 3D LiDAR Point Clouds with Real-Time Performance" from

Wangxu1996 135 Jan 06, 2023
Statistical and Algorithmic Investing Strategies for Everyone

Eiten - Algorithmic Investing Strategies for Everyone Eiten is an open source toolkit by Tradytics that implements various statistical and algorithmic

Tradytics 2.5k Jan 02, 2023
A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
Implementation of the state-of-the-art vision transformers with tensorflow

ViT Tensorflow This repository contains the tensorflow implementation of the state-of-the-art vision transformers (a category of computer vision model

Mohammadmahdi NouriBorji 2 Mar 16, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
Improved Fitness Optimization Landscapes for Sequence Design

ReLSO Improved Fitness Optimization Landscapes for Sequence Design Description Citation How to run Training models Original data source Description In

Krishnaswamy Lab 44 Dec 20, 2022
Python package facilitating the use of Bayesian Deep Learning methods with Variational Inference for PyTorch

PyVarInf PyVarInf provides facilities to easily train your PyTorch neural network models using variational inference. Bayesian Deep Learning with Vari

342 Dec 02, 2022
FSL-Mate: A collection of resources for few-shot learning (FSL).

FSL-Mate is a collection of resources for few-shot learning (FSL). In particular, FSL-Mate currently contains FewShotPapers: a paper list which tracks

Yaqing Wang 1.5k Jan 08, 2023
The pytorch implementation of SOKD (BMVC2021).

Semi-Online Knowledge Distillation Implementations of SOKD. Requirements This repo was tested with Python 3.8, PyTorch 1.5.1, torchvision 0.6.1, CUDA

4 Dec 19, 2021
DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021)

DPC: Unsupervised Deep Point Correspondence via Cross and Self Construction (3DV 2021) This repo is the implementation of DPC. Tested environment Pyth

Dvir Ginzburg 30 Nov 30, 2022
This script runs neural style transfer against the provided content image.

Neural Style Transfer Content Style Output Description: This script runs neural style transfer against the provided content image. The content image m

Martynas Subonis 0 Nov 25, 2021