StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

Related tags

Deep LearningStackGAN
Overview

StackGAN

Tensorflow implementation for reproducing main results in the paper StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks by Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas.

Dependencies

python 2.7

TensorFlow 0.12

[Optional] Torch is needed, if use the pre-trained char-CNN-RNN text encoder.

[Optional] skip-thought is needed, if use the skip-thought text encoder.

In addition, please add the project folder to PYTHONPATH and pip install the following packages:

  • prettytensor
  • progressbar
  • python-dateutil
  • easydict
  • pandas
  • torchfile

Data

  1. Download our preprocessed char-CNN-RNN text embeddings for birds and flowers and save them to Data/.
  • [Optional] Follow the instructions reedscot/icml2016 to download the pretrained char-CNN-RNN text encoders and extract text embeddings.
  1. Download the birds and flowers image data. Extract them to Data/birds/ and Data/flowers/, respectively.
  2. Preprocess images.
  • For birds: python misc/preprocess_birds.py
  • For flowers: python misc/preprocess_flowers.py

Training

  • The steps to train a StackGAN model on the CUB dataset using our preprocessed data for birds.
    • Step 1: train Stage-I GAN (e.g., for 600 epochs) python stageI/run_exp.py --cfg stageI/cfg/birds.yml --gpu 0
    • Step 2: train Stage-II GAN (e.g., for another 600 epochs) python stageII/run_exp.py --cfg stageII/cfg/birds.yml --gpu 1
  • Change birds.yml to flowers.yml to train a StackGAN model on Oxford-102 dataset using our preprocessed data for flowers.
  • *.yml files are example configuration files for training/testing our models.
  • If you want to try your own datasets, here are some good tips about how to train GAN. Also, we encourage to try different hyper-parameters and architectures, especially for more complex datasets.

Pretrained Model

  • StackGAN for birds trained from char-CNN-RNN text embeddings. Download and save it to models/.
  • StackGAN for flowers trained from char-CNN-RNN text embeddings. Download and save it to models/.
  • StackGAN for birds trained from skip-thought text embeddings. Download and save it to models/ (Just used the same setting as the char-CNN-RNN. We assume better results can be achieved by playing with the hyper-parameters).

Run Demos

  • Run sh demo/flowers_demo.sh to generate flower samples from sentences. The results will be saved to Data/flowers/example_captions/. (Need to download the char-CNN-RNN text encoder for flowers to models/text_encoder/. Note: this text encoder is provided by reedscot/icml2016).
  • Run sh demo/birds_demo.sh to generate bird samples from sentences. The results will be saved to Data/birds/example_captions/.(Need to download the char-CNN-RNN text encoder for birds to models/text_encoder/. Note: this text encoder is provided by reedscot/icml2016).
  • Run python demo/birds_skip_thought_demo.py --cfg demo/cfg/birds-skip-thought-demo.yml --gpu 2 to generate bird samples from sentences. The results will be saved to Data/birds/example_captions-skip-thought/. (Need to download vocabulary for skip-thought vectors to Data/skipthoughts/).

Examples for birds (char-CNN-RNN embeddings), more on youtube:

Examples for flowers (char-CNN-RNN embeddings), more on youtube:

Save your favorite pictures generated by our models since the randomness from noise z and conditioning augmentation makes them creative enough to generate objects with different poses and viewpoints from the same discription 😃

Citing StackGAN

If you find StackGAN useful in your research, please consider citing:

@inproceedings{han2017stackgan,
Author = {Han Zhang and Tao Xu and Hongsheng Li and Shaoting Zhang and Xiaogang Wang and Xiaolei Huang and Dimitris Metaxas},
Title = {StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks},
Year = {2017},
booktitle = {{ICCV}},
}

Our follow-up work

References

  • Generative Adversarial Text-to-Image Synthesis Paper Code
  • Learning Deep Representations of Fine-grained Visual Descriptions Paper Code
Owner
Han Zhang
Han Zhang
EsViT: Efficient self-supervised Vision Transformers

Efficient Self-Supervised Vision Transformers (EsViT) PyTorch implementation for EsViT, built with two techniques: A multi-stage Transformer architect

Microsoft 352 Dec 25, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference Abeßer, J. & Müller, M. Towards Audio Domain Adapt

Jakob Abeßer 2 Jul 06, 2022
PyTorch-centric library for evaluating and enhancing the robustness of AI technologies

Responsible AI Toolbox A library that provides high-quality, PyTorch-centric tools for evaluating and enhancing both the robustness and the explainabi

24 Dec 22, 2022
IA for recognising Traffic Signs using Keras [Tensorflow]

Traffic Signs Recognition ⚠️ 🚦 Fundamentals of Intelligent Systems Introduction 📄 Development of a neural network capable of recognizing nine differ

Sebastián Fernández García 2 Dec 19, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022
Generate images from texts. In Russian

ruDALL-E Generate images from texts pip install rudalle==1.1.0rc0 🤗 HF Models: ruDALL-E Malevich (XL) ruDALL-E Emojich (XL) (readme here) ruDALL-E S

AI Forever 1.6k Dec 31, 2022
Papers about explainability of GNNs

Papers about explainability of GNNs

Dongsheng Luo 236 Jan 04, 2023
This is my codes that can visualize the psnr image in testing videos.

CVPR2018-Baseline-PSNRplot This is my codes that can visualize the psnr image in testing videos. Future Frame Prediction for Anomaly Detection – A New

Wenhao Yang 12 May 29, 2021
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation

Weak-supervised Visual Geo-localization via Attention-based Knowledge Distillation Introduction WAKD is a PyTorch implementation for our ICPR-2022 pap

2 Oct 20, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
Towards Long-Form Video Understanding

Towards Long-Form Video Understanding Chao-Yuan Wu, Philipp Krähenbühl, CVPR 2021 [Paper] [Project Page] [Dataset] Citation @inproceedings{lvu2021,

Chao-Yuan Wu 69 Dec 26, 2022
Unsupervised Image to Image Translation with Generative Adversarial Networks

Unsupervised Image to Image Translation with Generative Adversarial Networks Paper: Unsupervised Image to Image Translation with Generative Adversaria

Hao 71 Oct 30, 2022