Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

Overview

StackGAN-v2

Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks by Han Zhang*, Tao Xu*, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang, Dimitris Metaxas.

Dependencies

python 2.7

Pytorch

In addition, please add the project folder to PYTHONPATH and pip install the following packages:

  • tensorboard
  • python-dateutil
  • easydict
  • pandas
  • torchfile

Data

  1. Download our preprocessed char-CNN-RNN text embeddings for birds and save them to data/
  • [Optional] Follow the instructions reedscot/icml2016 to download the pretrained char-CNN-RNN text encoders and extract text embeddings.
  1. Download the birds image data. Extract them to data/birds/
  2. Download ImageNet dataset and extract the images to data/imagenet/
  3. Download LSUN dataset and save the images to data/lsun

Training

  • Train a StackGAN-v2 model on the bird (CUB) dataset using our preprocessed embeddings:
    • python main.py --cfg cfg/birds_3stages.yml --gpu 0
  • Train a StackGAN-v2 model on the ImageNet dog subset:
    • python main.py --cfg cfg/dog_3stages_color.yml --gpu 0
  • Train a StackGAN-v2 model on the ImageNet cat subset:
    • python main.py --cfg cfg/cat_3stages_color.yml --gpu 0
  • Train a StackGAN-v2 model on the lsun bedroom subset:
    • python main.py --cfg cfg/bedroom_3stages_color.yml --gpu 0
  • Train a StackGAN-v2 model on the lsun church subset:
    • python main.py --cfg cfg/church_3stages_color.yml --gpu 0
  • *.yml files are example configuration files for training/evaluation our models.
  • If you want to try your own datasets, here are some good tips about how to train GAN. Also, we encourage to try different hyper-parameters and architectures, especially for more complex datasets.

Pretrained Model

Evaluating

  • Run python main.py --cfg cfg/eval_birds.yml --gpu 1 to generate samples from captions in birds validation set.
  • Change the eval_*.yml files to generate images from other pre-trained models.

Examples generated by StackGAN-v2

Tsne visualization of randomly generated birds, dogs, cats, churchs and bedrooms

Citing StackGAN++

If you find StackGAN useful in your research, please consider citing:

@article{Han17stackgan2,
  author    = {Han Zhang and Tao Xu and Hongsheng Li and Shaoting Zhang and Xiaogang Wang and Xiaolei Huang and Dimitris Metaxas},
  title     = {StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks},
  journal   = {arXiv: 1710.10916},
  year      = {2017},
}
@inproceedings{han2017stackgan,
Author = {Han Zhang and Tao Xu and Hongsheng Li and Shaoting Zhang and Xiaogang Wang and Xiaolei Huang and Dimitris Metaxas},
Title = {StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks},
Year = {2017},
booktitle = {{ICCV}},
}

Our follow-up work

References

  • Generative Adversarial Text-to-Image Synthesis Paper Code
  • Learning Deep Representations of Fine-grained Visual Descriptions Paper Code
Owner
Han Zhang
Han Zhang
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
Flower - A Friendly Federated Learning Framework

Flower - A Friendly Federated Learning Framework Flower (flwr) is a framework for building federated learning systems. The design of Flower is based o

Adap 1.8k Jan 01, 2023
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
Architecture Patterns with Python (TDD, DDD, EDM)

architecture-traning Architecture Patterns with Python (TDD, DDD, EDM) Chapter 5. 높은 기어비와 낮은 기어비의 TDD 5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가? 도메인 계층 테스트 def

minsung sim 2 Mar 04, 2022
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
[IEEE Transactions on Computational Imaging] Self-Gated Memory Recurrent Network for Efficient Scalable HDR Deghosting

Few-shot Deep HDR Deghosting This repository contains code and pretrained models for our paper: Self-Gated Memory Recurrent Network for Efficient Scal

Susmit Agrawal 4 Dec 29, 2021
DeepSpamReview: Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures. Summer Internship project at CoreView Systems.

Detection of Fake Reviews on Online Review Platforms using Deep Learning Architectures Dataset: https://s3.amazonaws.com/fast-ai-nlp/yelp_review_polar

Ashish Salunkhe 37 Dec 17, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
mPose3D, a mmWave-based 3D human pose estimation model.

mPose3D, a mmWave-based 3D human pose estimation model.

KylinChen 35 Nov 08, 2022
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions"

ModelNet-C Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com

Jiawei Ren 45 Dec 28, 2022
Simple tools for logging and visualizing, loading and training

TNT TNT is a library providing powerful dataloading, logging and visualization utilities for Python. It is closely integrated with PyTorch and is desi

1.5k Jan 02, 2023
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022