[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

Overview

DrRepair: Learning to Repair Programs from Error Messages

This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program Repair from Diagnostic Feedback (ICML 2020).

@InProceedings{Yasunaga20DrRepair,
  author =  {Michihiro Yasunaga and Percy Liang},
  title =   {Graph-based, Self-Supervised Program Repair from Diagnostic Feedback},
  year =    {2020},  
  booktitle =   {International Conference on Machine Learning (ICML)},  
}

Dependencies

  • GCC: Follow the SPoC requirement (https://github.com/Sumith1896/spoc)
  • Python 3.6.8 (e.g. conda create -n DrRepair python=3.6.8)
  • Python libraries
    • torch==1.0.1, numpy, tqdm, regex, joblib, pyyaml, bottle, cheroot, tensorboardX
    • clang==8.0.1 (do the following)
      conda config --add channels conda-forge
      conda install python-clang==8.0.1
      

Data

Download all the raw data -- DeepFix, SPoC, codeforce (for pretraining) -- by

./download_raw_data.sh

You can preprocess the raw data to get the program repair data by running the commands in

data/1.run-gen-err-dataset--orig-spoc.sh
data/2.run-gen-err-dataset--auto-corrupt--spoc.sh
data/3.run-gen-err-dataset--auto-corrupt--deepfix.sh

However, this takes a significant time, so for your convenience, you can download all the preprocessed data by

./download_preprocessed_data.sh

The repo structure looks like the following:

.
└─ raw_data/
   ├── codeforce_data/                  (raw programs from codeforce)
   ├── deepfix_data/                    (raw programs from deepfix)
   └── spoc_data/
       ├── spoc                              (SPoC data release)
       └── translation_preds                 (line-level code predictions from Kulal+19)

└─ data/                             
   ├── *.sh, *.py                       (preprocessing scripts)
   ├── err-data-compiler--orig-spoc/    (preprocessed, program repair data for spoc)
   ├── err-dev-compiler--for-SPoC/      (└─ dev data for spoc)
   ├── err-vocab-compiler--for-SPoC/    (└─ vocab for spoc)
   ...
   ... [similarly for deepfix and pre-training]

└─ utils/                      (utilities for code processing)

└─ model/                      (DrRepair model)

└─ evaluation/                 (to evaluate Repair model on deepfix/spoc test)
   ├── deepfix
   └── spoc
       ├── translation_preds_test/           (line-level code predictions from Kulal+19 for TestP/TestW)
       ...

Train models

Let's train program repair models. First, go to model directory. Then, run commands listed in run_deepfix.sh or run_spoc.sh. For example, if we train DrRepair ("base + graph" in the paper) on the DeepFix data, run:

name="code-compiler--2l-graph"
mkdir -p out_deepfix/${name}
python3 -u main_deepfix.py -o ${name} train \
    configs/base.yml  configs/data-deepfix/err-data-orig.yml \
    configs/model-code-compiler/2l-graph--dec-attn-all.yml

Evaluate models

We run the trained program repair model as a server. We then call this model on application tasks (DeepFix and SPoC) to evaluate the usefulness of the model.

DeepFix

1. Start server

First, go to model directory. We run a trained model (e.g. code-compiler--2l-graph) as a server by

name="SERVER--code-compiler--2l-graph"
mkdir out_deepfix/${name}
python3 -u main_deepfix.py -o ${name} server -p <port> \
    -l out_deepfix/code-compiler--2l-graph/<checkpoint> \
    configs/base.yml  configs/data-deepfix/err-data-orig.yml \
    configs/model-code-compiler/2l-graph--dec-attn-all.yml

For <port>, pick a port number (e.g. 8080) for the server. For <checkpoint>, pick a checkpoint (e.g. 150000) of the trained model. Then run ifconfig to get the IP address (e.g. 172.24.67.161) of the machine hosting this model. Concrete examples are provided in the second half of model/run_deepfix.sh.

2. Run model on DeepFix test

Go to evaluation/deepfix directory. First prepare:

repo_root="../../../.."
program_data_root=${repo_root}"/raw_data/deepfix_data"
test_split_root=${repo_root}"/data/err-data-compiler--auto-corrupt--orig-deepfix/bin4"

To run the trained model on the DeepFix test examples, do

name="code-compiler--2l-graph"
mkdir -p out/${name}/log
cd out/${name}

for entry in ${test_split_root}/*
do
  probid=`basename $entry`
  python3 -u ../../test_deepfix.py \
  --input-code-dir ${program_data_root}/${probid}/erroneous \
  --repairer-server  http://<IP>:<port>/pred
done

where you plug the IP address and port number into <IP> and <port>. After this completes, you can get the test accuracy by

python3 -u ../../collate_deepfix.py

Concrete examples are provided in evaluation/run_test_deepfix.sh.

SPoC

1. Start server

First, go to model directory. We run a trained model (e.g. code-compiler--2l-graph--finetune) as a server by

name="SERVER--code-compiler--2l-graph--finetune"
mkdir out_spoc/${name}
python3 -u main_spoc.py -o ${name} server -p <port> \
    -l out_spoc/code-compiler--2l-graph--finetune/<checkpoint> \
    configs/base.yml  configs/data-spoc/err-data-orig.yml \
    configs/model-code-compiler/2l-graph--dec-attn-all.yml

Similar to DeepFix, pick a port number and a checkpoint, and get the IP address. Concrete examples are provided in the second half of model/run_spoc.sh.

2. Run model on SPoC test

Go to evaluation/spoc directory. First prepare:

repo_root="../../../.."

To run the trained model on all the programs in SPoC TestW, do

name="code-compiler--2l-graph--finetune"

INPUT=translation_preds_test/testw    #change to testp if you want to evaluate on testp
N=$(tail -n+2 ${INPUT}.tsv | cut -f 3-6 | uniq | wc -l)  # Count the number of programs
interval=10

mkdir -p out_testw/${name}/log        #change to testp if you want to evaluate on testp
cd out_testw/${name}                  #change to testp if you want to evaluate on testp

i=1
while [[ $i -le $N ]]; do
  python -u ../../test_spoc.py -p 100 \
  --compile-budget 100 --n-parallel ${interval} \
  --repairer-server  http://<IP>:<port>/pred \
  ../../${INPUT} $i
  i=$(($i + ${interval}))
done

where you plug the IP address and port number into <IP> and <port>. After this completes, you can get the test accuracy by

python3 -u ../../collate_spoc.py

Concrete examples are provided in evaluation/run_test_spoc.sh.

Acknowledgment

The original DeepFix and SPoC data used in this work come from the following papers:

DeepFix: Fixing common C language errors by deep learning. Rahul Gupta, Soham Pal, Aditya Kanade, Shirish Shevade. AAAI 2017.
SPoC: Search-based Pseudocode to Code. Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken and Percy Liang. NeurIPS 2019.
Owner
Michihiro Yasunaga
PhD Student in Computer Science
Michihiro Yasunaga
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
Theano is a Python library that allows you to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficiently. It can use GPUs and perform efficient symbolic differentiation.

============================================================================================================ `MILA will stop developing Theano https:

9.6k Dec 31, 2022
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
Flexible time series feature extraction & processing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful

PreDiCT.IDLab 206 Dec 28, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
[NeurIPS 2021] Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited Data

Near-Duplicate Video Retrieval with Deep Metric Learning This repository contains the Tensorflow implementation of the paper Near-Duplicate Video Retr

Liming Jiang 238 Nov 25, 2022
Learning Representational Invariances for Data-Efficient Action Recognition

Learning Representational Invariances for Data-Efficient Action Recognition Official PyTorch implementation for Learning Representational Invariances

Virginia Tech Vision and Learning Lab 27 Nov 22, 2022
Temporal Dynamic Convolutional Neural Network for Text-Independent Speaker Verification and Phonemetic Analysis

TDY-CNN for Text-Independent Speaker Verification Official implementation of Temporal Dynamic Convolutional Neural Network for Text-Independent Speake

Seong-Hu Kim 16 Oct 17, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
An open source machine learning library for performing regression tasks using RVM technique.

Introduction neonrvm is an open source machine learning library for performing regression tasks using RVM technique. It is written in C programming la

Siavash Eliasi 33 May 31, 2022
给yolov5加个gui界面,使用pyqt5,yolov5是5.0版本

博文地址 https://xugaoxiang.com/2021/06/30/yolov5-pyqt5 代码执行 项目中使用YOLOv5的v5.0版本,界面文件是project.ui pip install -r requirements.txt python main.py 图片检测 视频检测

Xu GaoXiang 215 Dec 30, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks

CALVIN CALVIN - A benchmark for Language-Conditioned Policy Learning for Long-Horizon Robot Manipulation Tasks Oier Mees, Lukas Hermann, Erick Rosete,

Oier Mees 107 Dec 26, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022