Architecture Patterns with Python (TDD, DDD, EDM)

Overview

architecture-traning

Architecture Patterns with Python (TDD, DDD, EDM)

Chapter 5. 높은 기어비와 낮은 기어비의 TDD

5.2 도메인 계층 테스트를 서비스 계층으로 옮겨야 하는가?

  • 도메인 계층 테스트
def test_prefers_current_stock_batches_to_shipments():
    in_stock_batch = Batch("in_stock_batch", "RETRO-CLOCK", 100, eta=None)
    shipment_batch = Batch("shipment-batch", "RETRO-CLOCK", 100, eta=tomorrow)
    line = OrderLine("oref", "RETRO-CLOCK", 10)
    allocate(line, [in_stock_batch, shipment_batch])

    assert in_stock_batch.available_quantity == 90
    assert shipment_batch.available_quantity == 100
  • 서비스 계층 테스트
def test_prefers_warehouse_batches_to_shipments():
    in_stock_batch = Batch("in-stock-batch", "RETRO-CLOCK", 100, eta=None)
    shipment_batch = Batch("shipment-batch", "RETRO-CLOCK", 100, eta=tomorrow)
    repo = FakeRepository([in_stock_batch, shipment_batch])
    session = FakeSession()
    line = OrderLine('oref', "RETRO-CLOCK", 10)
    services.allocate(line, repo, session)

    assert in_stock_batch.available_quantity == 90
    assert shipment_batch.available_quantity == 100

왜 도메인 계층의 테스트가 아닌 서비스 계층 테스트로 해야할까?

  1. 시스템을 바꾸는 데 어렵지 않다.
  2. 서비스 계층은 시스템을 다양한 방식으로 조정할 수 있는 API를 형성한다.

5.5 서비스 계층 테스트를 도메인으로부터 완전히 분리하기

  • 서비스 테스트에는 도메인 모델에 대한 의존성이 있다. 테스트 데이터를 설정하고 서비스 계층 함수를 호출하기 위해 도메인 객체를 사용하기 때문이다.
  • API를 원시 타입만 사용하도록 다시 작성한다.
# 이전 allocate는 도메인 객체를 받았다.
def allocate(line: OrderLine, repoL AbstractRepository, session) -> str:

# 도메인 의존성을 줄이기 위해 문자열과 정수를 받는다.  -> 원시 타입만 사용!
def allocate(orderid: str, sku: str, qty: int, repo:AbstractRepository, session) -> str:
  • ex) 직접 Batch 객체를 인스턴스화하므로 여전히 도메인에 의존하고 있다. 나중에 Batch 모델의 동작을 변경하면 수많은 테스트를 변경해야하기에 적합하지 않다.
def test_returns_allocation():
    batch = model.Batch("batch1", "Coplicated-lamp", 100, eta=None)
    repo = FakeRepository([batch])
    
    result = services.allocate("o1", "Coplicated-lamp", 10, repo, FakeSession())
    assert result == "batch1"

###5.5.1 위 예시에 대한 해결책 - 마이그레이션: 모든 도메인 의존성을 픽스처 함수에 넣기

  • FakeRepository에 팩토리 함수를 추가하여 추상화를 달성하는 방법 => 도메인 의존성을 한 군데로 모을 수 있다.
class FakeRepository(set):
    @staticmethod
    def for_batch(ref, sku, qty, eta=None):
        return FakeRepository([
            model.Batch(ref, sku, qty, eta)
        ])

    ...
    def test_returns_allocation(self):
        repo = FakeRepository.for_batch("batch1", "Complicated-lamp", 100, eta=None)
        result = services.allocate("o1", "Complicated-lamp", 10, repo, FakeSession())
        
        assert result == "batch1"

###5.5.2 예시 해결책: 누락된 서비스 추가

  • 재고를 추가하는 서비스가 있다면 이 서비스를 사용해 온전히 서비스 계층의 공식적인 유스 케이스만 사용하는 서비스 계층 테스트를 작성할 수 있다.

tip: 일반적으로 서비스 계층 테스트에서 도메인 계층에 있는 요소가 필요하다면 이는 서비스 계층이 완전하지 않다는 사실이다.

def test_add_batch():
    repo, session = FakeSession([]), FakeSession()
    services.add_batch("b1", "Crunchy-armchair", 100, None, repo, session)
    assert repo.get("b1") is not None
    assert session.committed

서비스만 사용하는 서비스 테스트 example code

  • 서비스 계층 테스트가 오직 서비스 계층에만 의존하기 때문에 얼마든지 필요에 따라 모델을 리팩터링할 수 있다.
def test_allocate_returns_allocation():
    repo, session = FakeRepository([]), FakeSession()
    services.add_batch("batch1", "COMPLICATED-LAMP", 100, None, repo, session)
    result = services.allocate("o1", "COMPLICATED-LAMP", 10, repo, session)
    assert result == "batch1"


def test_allocate_errors_for_invalid_sku():
    repo, session = FakeRepository([]), FakeSession()
    services.add_batch("b1", "AREALSKU", 100, None, repo, session)

    with pytest.raises(services.InvalidSku, match="Invalid sku NONEXISTENTSKU"):
        services.allocate("o1", "NONEXISTENTSKU", 10, repo, FakeSession())

5.6 E2E 테스트에 도달할 때까지 계속 개선하기

  • 서비스 함수 덕에 엔드포인트를 추가하는 것이 쉬워졌다 JSON을 약간 조작하고 함수를 한 번 호출하면 된다.
@app.route("/add_batch", methods=['POST'])
def add_batch():
    session = get_session()
    repo = repository.SqlAlchemyRepository(session)
    eta = request.json["eta"]

    if eta is not None:
        eta = datetime.fromisoformat(eta).date()
        
    # JSON 조작 함수 한번 호출
    services.add_batch(
        request.json["ref"],
        request.json["sku"],
        request.json["qty"],
        eta,
        repo,
        session,
    )
    return "OK", 201


@app.route("/allocate", methods=["POST"])
def allocate_endpoint():
    session = get_session()
    repo = repository.SqlAlchemyRepository(session)
    try:
        # JSON 조작 함수 한번 호출
        batchref = services.allocate(
            request.json["orderid"],
            request.json["sku"],
            request.json["qty"],
            repo,
            session,
        )
    except (model.OutOfStock, services.InvalidSku) as e:
        return {"message": str(e)}, 400

    return {"batchref": batchref}, 201

정리: 여러 유형의 테스트를 작성하는 간단한 규칙

  • 특성당 엔드투엔드 테스트를 하나씩 만든다는 목표를 세워야 한다.

    • 예를 들어 이런 테스트는 HTTP API를 사용할 가능성이 높다. 목표는 어떤 특성이 잘 작동하는지 보고 움직이는 모든 부품이 서로 잘 연결되어 움직이는지 살펴보는 것이다.
  • 테스트 대부분은 서비스 계층을 만드는 걸 권한다.

    • 이런 테스트는 커버리지, 실행 시간, 효율 사이를 잘 절충할 수 있게 해준다. 각 테스트는 어떤 기능의 한 경로를 테스트하고 I/O에 가짜 객체를 사용하는 경향이 있다. 이 테스트는 모든 에지 케이스를 다루고, 비즈니스 로직의 모든 입력과 출력을 테스트해볼 수 있는 좋은 장소다.
  • 도메인 모델을 사용하는 핵심 테스트를 적게 작성하고 유지하는 걸 권한다.

    • 이런 테스트는 좀 더 커버리지가 작고(좁은 범위를 테스트), 더 깨지기 쉽다. 하지만 이런 테스트가 제공하는 피드백이 가장 크다. 이런 테스트를 나중에 서비스 계층 기반 테스트로 대신할 수 있다면 테스트를 주저하지 말고 삭제하는 것을 권한다.
  • 오류 처리도 특성으로 취급하자.

    • 이상적인 경우 애플리케이션은 모든 오류가 진입점(예: 플라스크)으로 거슬러 올라와서 처리되는 구조로 되어 있다. 단지 각 기능의 정상 경로만 테스트하고 모든 비정상 경로를 테스트하는 엔드투엔드 테스트를 하나만 유지하면 된다는 의미다(물론 비정상 경로를 테스트하는 단위 테스트가 많이 있어야 한다.).
Owner
minsung sim
Cryptocurrency Quant Trader
minsung sim
Wind Speed Prediction using LSTMs in PyTorch

Implementation of Deep-Forecast using PyTorch Deep Forecast: Deep Learning-based Spatio-Temporal Forecasting Adapted from original implementation Setu

Onur Kaplan 151 Dec 14, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Jie Shen 125 Jan 08, 2023
Part-Aware Data Augmentation for 3D Object Detection in Point Cloud

Part-Aware Data Augmentation for 3D Object Detection in Point Cloud This repository contains a reference implementation of our Part-Aware Data Augment

Jaeseok Choi 62 Jan 03, 2023
MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios

MetaTTE: a Meta-Learning Based Travel Time Estimation Model for Multi-city Scenarios This is the official TensorFlow implementation of MetaTTE in the

morningstarwang 4 Dec 14, 2022
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

this is a simple artificial neural network model using deep learning and torch-audio to classify cats and dog sounds.

crispengari 3 Dec 05, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
NeuralCompression is a Python repository dedicated to research of neural networks that compress data

NeuralCompression is a Python repository dedicated to research of neural networks that compress data. The repository includes tools such as JAX-based entropy coders, image compression models, video c

Facebook Research 297 Jan 06, 2023
MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction

MVSDF - Learning Signed Distance Field for Multi-view Surface Reconstruction This is the official implementation for the ICCV 2021 paper Learning Sign

110 Dec 20, 2022
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022