The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Overview

Magnetic Graph Convolutional Networks

The Magnetic Eigenmap

A directed 4-cycle

About

The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs.

Requirements

To install requirements:

pip3 install -r requirements.txt

Results

Node classification accuracy in Citation networks (%)

Model CoRA CiteSeer PubMed
GAT 82.60 ± 0.40 70.45 ± 0.25 77.45 ± 0.45
sMGC 82.70 ± 0.00 73.30 ± 0.00 79.90 ± 0.10
MGC 82.50 ± 1.00 71.25 ± 0.95 79.70 ± 0.40

Node classification accuracy in WebKB (%)

Model Cornell Texas Washington Wisconsin
GAT 41.03 ± 0.00 52.63 ± 2.63 63.04 ± 0.00 56.61 ± 1.88
sMGC 73.08 ± 1.28 71.05 ± 0.00 68.48 ± 3.26 80.19 ± 2.83
MGC 80.77 ± 3.85 82.90 ± 1.31 70.66 ± 1.08 87.74 ± 2.83

Reproduce experiment results

sMGC

CoRA:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cora.ini' --alpha=0.03 --t=8.05 --K=38

CiteSeer:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/citeseer.ini' --alpha=0.01 --t=5.16 --K=40

PubMed:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/pubmed.ini' --alpha=0.01 --t=5.95 --K=25

Cornell:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cornell.ini' --alpha=0.95 --t=45.32 --K=12

Texas:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/texas.ini' --alpha=0.71 --t=45.08 --K=23

Washington:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/washington.ini' --alpha=0.77 --t=45.95 --K=44

Wisconsin:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/wisconsin.ini' --alpha=0.93 --t=25.76 --K=34

MGC

CoRA:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cora.ini' --alpha=0.08 --t=5.85 --K=10 --droprate=0.4

CiteSeer:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/citeseer.ini' --alpha=0.01 --t=25.95 --K=35 --droprate=0.3

PubMed:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/pubmed.ini' --alpha=0.03 --t=15.95 --K=20 --droprate=0.5

Cornell:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cornell.ini' --alpha=0.66 --t=38.49 --K=31 --droprate=0.6

Texas:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/texas.ini' --alpha=0.75 --t=0.53 --K=4 --droprate=0.5

Washington:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/washington.ini' --alpha=0.73 --t=42.36 --K=21 --droprate=0.1

Wisconsin:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/wisconsin.ini' --alpha=0.34 --t=0.52 --K=12 --droprate=0.5
Owner
What we know is a drop. What we do not know is an ocean.
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Channel Pruning for Accelerating Very Deep Neural Networks (ICCV'17)

Yihui He 1k Jan 03, 2023
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

TensorFlow implementation of 3D Convolutional Neural Networks for Speaker Verification - Official Project Page - Pytorch Implementation This repositor

Amirsina Torfi 753 Dec 17, 2022
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
DyNet: The Dynamic Neural Network Toolkit

The Dynamic Neural Network Toolkit General Installation C++ Python Getting Started Citing Releases and Contributing General DyNet is a neural network

Chris Dyer's lab @ LTI/CMU 3.3k Jan 06, 2023
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

SJTU-ViSYS 112 Nov 28, 2022
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
Easy to use Python camera interface for NVIDIA Jetson

JetCam JetCam is an easy to use Python camera interface for NVIDIA Jetson. Works with various USB and CSI cameras using Jetson's Accelerated GStreamer

NVIDIA AI IOT 358 Jan 02, 2023
[CVPR2022] Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos

Bridge-Prompt: Towards Ordinal Action Understanding in Instructional Videos Created by Muheng Li, Lei Chen, Yueqi Duan, Zhilan Hu, Jianjiang Feng, Jie

58 Dec 23, 2022
Airborne magnetic data of the Osborne Mine and Lightning Creek sill complex, Australia

Osborne Mine, Australia - Airborne total-field magnetic anomaly This is a section of a survey acquired in 1990 by the Queensland Government, Australia

Fatiando a Terra Datasets 1 Jan 21, 2022
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
🏅 The Most Comprehensive List of Kaggle Solutions and Ideas 🏅

🏅 Collection of Kaggle Solutions and Ideas 🏅

Farid Rashidi 2.3k Jan 08, 2023
[NeurIPS 2021 Spotlight] Code for Learning to Compose Visual Relations

Learning to Compose Visual Relations This is the pytorch codebase for the NeurIPS 2021 Spotlight paper Learning to Compose Visual Relations. Demo Imag

Nan Liu 88 Jan 04, 2023
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
Cosine Annealing With Warmup

CosineAnnealingWithWarmup Formulation The learning rate is annealed using a cosine schedule over the course of learning of n_total total steps with an

zhuyun 4 Apr 18, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022