Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Overview

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022)

This is the Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains). In this paper, with only the knowledge of the ImageNet domain, we propose a Beyond ImageNet Attack (BIA) to investigate the transferability towards black-box domains (unknown classification tasks).

Requirement

  • Python 3.7
  • Pytorch 1.8.0
  • torchvision 0.9.0
  • numpy 1.20.2
  • scipy 1.7.0
  • pandas 1.3.0
  • opencv-python 4.5.2.54
  • joblib 0.14.1
  • Pillow 6.1

Dataset

images

  • Download the ImageNet training dataset.

  • Download the testing dataset.

Note: After downloading CUB-200-2011, Standford Cars and FGVC Aircraft, you should set the "self.rawdata_root" (DCL_finegrained/config.py: lines 59-75) to your saved path.

Target model

The checkpoint of target model should be put into model folder.

  • CUB-200-2011, Stanford Cars and FGVC AirCraft can be downloaded from here.
  • CIFAR-10, CIFAR-100, STL-10 and SVHN can be automatically downloaded.
  • ImageNet pre-trained models are available at torchvision.

Pretrained-Generators

framework Adversarial generators are trained against following four ImageNet pre-trained models.

  • VGG19
  • VGG16
  • ResNet152
  • DenseNet169

After finishing training, the resulting generator will be put into saved_models folder. You can also download our pretrained-generator from here.

Train

Train the generator using vanilla BIA (RN: False, DA: False)

python train.py --model_type vgg16 --train_dir your_imagenet_path --RN False --DA False

your_imagenet_path is the path where you download the imagenet training set.

Evaluation

Evaluate the performance of vanilla BIA (RN: False, DA: False)

python eval.py --model_type vgg16 --RN False --DA False

Citing this work

If you find this work is useful in your research, please consider citing:

@inproceedings{Zhang2022BIA,
  author    = {Qilong Zhang and
               Xiaodan Li and
               Yuefeng Chen and
               Jingkuan Song and
               Lianli Gao and
               Yuan He and
               Hui Xue},
  title     = {Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains},
  Booktitle = {International Conference on Learning Representations},
  year      = {2022}
}

Acknowledge

Thank @aaron-xichen and @Muzammal-Naseer for sharing their codes.

You might also like...
Explainer for black box models that predict molecule properties

Explaining why that molecule exmol is a package to explain black-box predictions of molecules. The package uses model agnostic explanations to help us

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

This is the repository for paper NEEDLE: Towards Non-invertible Backdoor Attack to Deep Learning Models.

Iterative Normalization: Beyond Standardization towards Efficient Whitening

IterNorm Code for reproducing the results in the following paper: Iterative Normalization: Beyond Standardization towards Efficient Whitening Lei Huan

This is the official code for the paper
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Code for the CVPR2022 paper
Code for the CVPR2022 paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity"

Introduction This is an official release of the paper "Frequency-driven Imperceptible Adversarial Attack on Semantic Similarity" (arxiv link). Abstrac

[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

Pre-trained model, code, and materials from the paper
Pre-trained model, code, and materials from the paper "Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation" (MICCAI 2019).

Adaptive Segmentation Mask Attack This repository contains the implementation of the Adaptive Segmentation Mask Attack (ASMA), a targeted adversarial

A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch
A PyTorch implementation of the paper Mixup: Beyond Empirical Risk Minimization in PyTorch

Mixup: Beyond Empirical Risk Minimization in PyTorch This is an unofficial PyTorch implementation of mixup: Beyond Empirical Risk Minimization. The co

Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Comments
  • About the comparative methods

    About the comparative methods

    Thank you for your insightful work! In Table3, I want to know that how to perform PGD or DIM on CUB with source models pretrained on ImageNet. Thank you~

    opened by lwmming 6
  • cursor already registered in Tk_GetCursor Aborted (core dumped)

    cursor already registered in Tk_GetCursor Aborted (core dumped)

    python train.py --model_type vgg16 --RN False --DA False

    I tried the above default training, but the error occurred at the end of the batch (epoch 1) training. Can you help debug this please?

    opened by hoonsyang 2
  • missing file

    missing file

    https://github.com/Alibaba-AAIG/Beyond-ImageNet-Attack/blob/7e8b1b8ec5728ebc01723f2c444bf2d5275ee7be/DCL_finegrained/LoadModel.py#L6 NameError: name 'pretrainedmodels' is not defined`

    opened by nkv1995 2
  • when computing cosine similarity

    when computing cosine similarity

    Hi! this is more of a question for the elegant work you have here but less of an issue.

    So when you take cosine similarity (which is to be decreased during training) between two feature maps, you take,

    loss = torch.cosine_similarity((adv_out_slice*attention).reshape(adv_out_slice.shape[0], -1), 
                                (img_out_slice*attention).reshape(img_out_slice.shape[0], -1)).mean()
    

    and that's to compare two flatten vectors, each of which is the flattened feature maps of size (N feature channels, width, height).

    I wonder why not comparing the flattened feature maps with respect to each channel, and then take the average across channels? To me, you're comparing two vectors that are (Nwidthheight)-dimensional, which is not so straightforward to me. Thanks in advance for any intuition behind!

    opened by juliuswang0728 1
Releases(pretrained_models)
Owner
Alibaba-AAIG
Alibaba Artificial Intelligence Governance Laboratory
Alibaba-AAIG
The official implementation of Autoregressive Image Generation using Residual Quantization (CVPR '22)

Autoregressive Image Generation using Residual Quantization (CVPR 2022) The official implementation of "Autoregressive Image Generation using Residual

Kakao Brain 529 Dec 30, 2022
Tool which allow you to detect and translate text.

Text detection and recognition This repository contains tool which allow to detect region with text and translate it one by one. Description Two pretr

Damian Panek 176 Nov 28, 2022
Classification of EEG data using Deep Learning

Graduation-Project Classification of EEG data using Deep Learning Epilepsy is the most common neurological disease in the world. Epilepsy occurs as a

Osman Alpaydın 5 Jun 24, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
Implementation of C-RNN-GAN.

Implementation of C-RNN-GAN. Publication: Title: C-RNN-GAN: Continuous recurrent neural networks with adversarial training Information: http://mogren.

Olof Mogren 427 Dec 25, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network."

R2RNet Official code of "R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network." Jiang Hai, Zhu Xuan, Ren Yang, Yutong Hao, Fengzhu

77 Dec 24, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
Official PyTorch implementation of StyleGAN3

Modified StyleGAN3 Repo Changes Made tied to python 3.7 syntax .jpgs instead of .pngs for training sample seeds to recreate the 1024 training grid wit

Derrick Schultz (he/him) 83 Dec 15, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view.

CenterPoint 3D Object Detection and Tracking using center points in the bird-eye view. Center-based 3D Object Detection and Tracking, Tianwei Yin, Xin

Tianwei Yin 134 Dec 23, 2022
Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting

QAConv Interpretable and Generalizable Person Re-Identification with Query-Adaptive Convolution and Temporal Lifting This PyTorch code is proposed in

Shengcai Liao 166 Dec 28, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
Neural Logic Inductive Learning

Neural Logic Inductive Learning This is the implementation of the Neural Logic Inductive Learning model (NLIL) proposed in the ICLR 2020 paper: Learn

36 Nov 28, 2022