Betafold - AlphaFold with tunings

Related tags

Deep Learningbetafold
Overview

alphafold.hegelab.org

BetaFold

We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer, v2.1.1) fork with changes that most likely will not be inserted in the main repository, but we found these modifications very useful during our daily work. We plan to try to push these changes gradually to main repo via our alphafold fork.

Warning

  • Currently, this is a no-Docker version. If you really need our functionalities inside a Docker Image, let us know.
  • Earlier opction for the configuration file was -c, now it is -C.

Changes / Features

  • It is called BetaFold, since there might be some minor bugs – we provide this code “as is”.
  • This fork includes the correction of memory issues from our alphafold fork (listed below).
  • The changes mostly affect the workflow logic.
  • BetaFold run can be influence via configuration files.
  • Different steps of AF2 runs (generating features; running models; performing relaxation) can be separated. Thus database searches can run on a CPU node, while model running can be performed on a GPU node. Note: timings.json file is overwritten upon consecutive partial runs – save it if you need it.

Configuration file

  • You can provide the configuration file as: ‘run_alphafold.sh ARGUMENTS -C CONF_FILENAME’ (slightly modified version of the bash script from AlfaFold without docker @ kalininalab; please see below our Requirement section)
  • If no configuration file or no section or no option is provided, everything is expected to run everything with the original default parameters.
[steps]
get_features = true
run_models = true
run_relax = true

[relax]
top

Requirements

Paper/Reference/Citation

Till we publish a methodological paper, please read and cite our preprint "AlphaFold2 transmembrane protein structure prediction shines".

Memory issues you may encounter when running original AlphaFold locally

"Out of Memory"

This is expected to be included in the next AF2 release, see: pull request #296.

Brief, somewhat outdated summary: Some of our AF2 runs with short sequences (~250 a.a.) consumed all of our memory (96GB) and died. Our targets in these cases were highly conserved and produced a very large alignment file, which is read into the memory by a simple .read() in alphafold/data/tools/jackhmmer.py _query_chunk. Importantly, the max_hit limit is applied at a later step to the full set, which resides already in the memory, so this option does not prevent this error.

  • To overcome this issue exhausting the system RAM, we read the .sto file line-by-line, so only max_hit will reach the memory.
  • Since the same data needed line-by-line for a3m conversion, we merged the two step together. We inserted to functions into alphafold/data/parsers.py: get_sto if only sto is needed and get_sto_a3m if also a3m is needed (the code is somewhat redundant but simple and clean).
  • This issue was caused by jackhmmer_uniref90_runner.query and jackhmmer_mgnify_runner.query, so we modified the calls to this function in alphafold/data/pipeline.py.
  • The called query in alphafold/data/tools/jackhmmer.py calls _query_chunk; from here we call our get_sto*; _query_chunk returns the raw_output dictionary, which also includes 'a3m' as a string or None.

License and Disclaimer

Please see the original.

Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
Vision Deep-Learning using Tensorflow, Keras.

Welcome! I am a computer vision deep learning developer working in Korea. This is my blog, and you can see everything I've studied here. https://www.n

kimminjun 6 Dec 14, 2022
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022
PyTorch - Python + Nim

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
A PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detection.

R-YOLOv4 This is a PyTorch-based R-YOLOv4 implementation which combines YOLOv4 model and loss function from R3Det for arbitrary oriented object detect

94 Dec 03, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

FPT_data_centric_competition - Team nan solution repository for FPT data-centric competition. Data augmentation, Albumentation, Mosaic, Visualization, KNN application

Pham Viet Hoang (Harry) 2 Oct 30, 2022
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation

Ansible Automation Example: JSNAPY PRE/POST Upgrade Validation Overview This example will show how to validate the status of our firewall before and a

Calvin Remsburg 1 Jan 07, 2022
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
Simple streamlit app to demonstrate HERE Tour Planning

Table of Contents About the Project Built With Getting Started Prerequisites Installation Usage Roadmap Contributing License Acknowledgements About Th

Amol 8 Sep 05, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
Code for paper [ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot] (ICCV 2021, oral))

ACE: Ally Complementary Experts for Solving Long-Tailed Recognition in One-Shot This repository is the official PyTorch implementation of ICCV-21 pape

Jiarui 21 May 09, 2022
Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Codebase for Amodal Segmentation through Out-of-Task andOut-of-Distribution Generalization with a Bayesian Model

Yihong Sun 12 Nov 15, 2022
Simultaneous Detection and Segmentation

Simultaneous Detection and Segmentation This is code for the ECCV Paper: Simultaneous Detection and Segmentation Bharath Hariharan, Pablo Arbelaez,

Bharath Hariharan 96 Jul 20, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
Efficient Training of Visual Transformers with Small Datasets

Official codes for "Efficient Training of Visual Transformers with Small Datasets", NerIPS 2021.

Yahui Liu 112 Dec 25, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

Gary Briggs 16 Oct 11, 2022