OMNIVORE is a single vision model for many different visual modalities

Related tags

Deep Learningomnivore
Overview

Omnivore: A Single Model for Many Visual Modalities

PWC PWC PWC PWC PWC

[paper][website]

OMNIVORE is a single vision model for many different visual modalities. It learns to construct representations that are aligned across visual modalities, without requiring training data that specifies correspondences between those modalities. Using OMNIVORE’s shared visual representation, we successfully identify nearest neighbors of left: an image (ImageNet-1K validation set) in vision datasets that contain right: depth maps (ImageNet-1K training set), single-view 3D images (ImageNet-1K training set), and videos (Kinetics-400 validation set).

This repo contains the code to run inference with a pretrained model on an image, video or RGBD image.

Usage

Setup and Installation

conda create --name omnivore python=3.8
conda activate omnivore
conda install pytorch=1.9.0 torchvision=0.10.0 torchaudio=0.9.0 cudatoolkit=11.1 -c pytorch -c nvidia
conda install -c conda-forge -c pytorch -c defaults apex
conda install pytorchvideo

To run the notebook you may also need to install the follwing:

conda install jupyter nb_conda ipykernel
python -m ipykernel install --user --name omnivore

Run Inference

Follow the inference_tutorial.ipynb tutorial locally or Open in Colab for step by step instructions on how to run inference with an image, video and RGBD image.

Model Zoo

Name IN1k Top 1 Kinetics400 Top 1 SUN RGBD Top 1 Model
Omnivore Swin T 81.2 78.9 62.3 weights
Omnivore Swin S 83.4 82.2 64.6 weights
Omnivore Swin B 84.0 83.3 65.4 weights
Omnivore Swin B (IN21k) 85.3 84.0 67.2 weights
Omnivore Swin L (IN21k) 86.0 84.1 67.1 weights

Numbers are based on Table 2. and Table 4. in the Omnivore Paper.

Torch Hub

Models can be loaded via torch hub e.g.

model = torch.hub.load("facebookresearch/omnivore", model="omnivore_swinB")

The class mappings for the datasets can be downloaded as follows:

wget https://s3.amazonaws.com/deep-learning-models/image-models/imagenet_class_index.json 
wget https://dl.fbaipublicfiles.com/pyslowfast/dataset/class_names/kinetics_classnames.json 
wget https://dl.fbaipublicfiles.com/omnivore/sunrgbd_classnames.json

Citation

If this work is helpful in your research, please consider starring us and citing:

@article{girdhar2022omnivore,
  title={{Omnivore: A Single Model for Many Visual Modalities}},
  author={Girdhar, Rohit and Singh, Mannat and Ravi, Nikhila and van der Maaten, Laurens and Joulin, Armand and Misra, Ishan},
  journal={arXiv preprint arXiv:2201.08377},
  year={2022}
}

Contributing

We welcome your pull requests! Please see CONTRIBUTING and CODE_OF_CONDUCT for more information.

License

Omnivore is released under the CC-BY-NC 4.0 license. See LICENSE for additional details. However the Swin Transformer implementation is additionally licensed under the Apache 2.0 license (see NOTICE for additional details).

Owner
Meta Research
Meta Research
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

5 Nov 03, 2022
K Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching (To appear in RA-L 2022)

KCP The official implementation of KCP: k Closest Points and Maximum Clique Pruning for Efficient and Effective 3D Laser Scan Matching, accepted for p

Yu-Kai Lin 109 Dec 14, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] ✔️ faster convergence in wall-clock time | ✔️ O(1) memory cost | ✔️ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

Tianyu Ding 95 Dec 04, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022
SMIS - Semantically Multi-modal Image Synthesis(CVPR 2020)

Semantically Multi-modal Image Synthesis Project page / Paper / Demo Semantically Multi-modal Image Synthesis(CVPR2020). Zhen Zhu, Zhiliang Xu, Anshen

316 Dec 01, 2022
Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE)

OG-SPACE Introduction Optimized Gillespie algorithm for simulating Stochastic sPAtial models of Cancer Evolution (OG-SPACE) is a computational framewo

Data and Computational Biology Group UNIMIB (was BI*oinformatics MI*lan B*icocca) 0 Nov 17, 2021
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation

ST++ This is the official PyTorch implementation of our paper: ST++: Make Self-training Work Better for Semi-supervised Semantic Segmentation. Lihe Ya

Lihe Yang 147 Jan 03, 2023
Supplementary code for the AISTATS 2021 paper "Matern Gaussian Processes on Graphs".

Matern Gaussian Processes on Graphs This repo provides an extension for gpflow with Matérn kernels, inducing variables and trainable models implemente

41 Dec 17, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
PCGNN - Procedural Content Generation with NEAT and Novelty

PCGNN - Procedural Content Generation with NEAT and Novelty Generation Approach — Metrics — Paper — Poster — Examples PCGNN - Procedural Content Gener

Michael Beukman 8 Dec 10, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
Cleaned up code for DSTC 10: SIMMC 2.0 track: subtask 2: multimodal coreference resolution

UNITER-Based Situated Coreference Resolution with Rich Multimodal Input: arXiv MMCoref_cleaned Code for the MMCoref task of the SIMMC 2.0 dataset. Pre

Yichen (William) Huang 2 Dec 05, 2022
code for generating data set ES-ImageNet with corresponding training code

es-imagenet-master code for generating data set ES-ImageNet with corresponding training code dataset generator some codes of ODG algorithm The variabl

Ordinarabbit 18 Dec 25, 2022
基于Paddlepaddle复现yolov5,支持PaddleDetection接口

PaddleDetection yolov5 https://github.com/Sharpiless/PaddleDetection-Yolov5 简介 PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。 PaddleD

36 Jan 07, 2023