[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Overview

Listening to Sounds of Silence for Speech Denoising

Introduction

This is the repository of the "Listening to Sounds of Silence for Speech Denoising" project. (Project URL: here) Our approach is based on a key observation about human speech: there is often a short pause between each sentence or word. In a recorded speech signal, those pauses introduce a series of time periods during which only noise is present. We leverage these incidental silent intervals to learn a model for automatic speech denoising given only mono-channel audio. Detected silent intervals over time expose not just pure noise but its time varying features, allowing the model to learn noise dynamics and suppress it from the speech signal. An overview of our audio denoise network is shown here:

Silent Interval Detection Model

Our model has three components: (a) one that detects silent intervals over time, and outputs a noise profile observed from detected silent intervals; (b) another that estimates the full noise profile, and (c) yet another that cleans up the input signal.

Dependencies

  • Python 3
  • PyTorch 1.3.0

You can install the requirements either to your virtual environment or the system via pip with:

pip install -r requirements.txt

Data

Training and Testing

Our model is trained on publicly available audio datasets. We obtain clean speech signals using AVSPEECH, from which we randomly choose 2448 videos (4:5 hours of total length) and extract their speech audio channels. Among them, we use 2214 videos for training and 234 videos for testing, so the training and testing speeches are fully separate.

We use two datasets, DEMAND and Google’s AudioSet, as background noise. Both consist of environmental noise, transportation noise, music, and many other types of noises. DEMAND has been widely used in previous denoising works. Yet AudioSet is much larger and more diverse than DEMAND, thus more challenging when used as noise.

Due to the linearity of acoustic wave propagation, we can superimpose clean speech signals with noise to synthesize noisy input signals. When synthesizing a noisy input signal, we randomly choose a signal-to-noise ratio (SNR) from seven discrete values: -10dB, -7dB, -3dB, 0dB, 3dB, 7dB, and 10dB; and by mixing the foreground speech with properly scaled noise, we produce a noisy signal with the chosen SNR. For example, a -10dB SNR means that the power of noise is ten times the speech. The SNR range in our evaluations (i.e., [-10dB, 10dB]) is significantly larger than those tested in previous works.

Dataset Structure (For inference)

Please organize the dataset directory as follows:

dataset/
├── audio1.wav
├── audio2.wav
├── audio3.wav
...

Please also provide a csv file including each audio file's file_name (without extension). For example:

audio1
audio2
audio3
...

An example is provided in the data/sounds_of_silence_audioonly_original directory.

Data Preprocessing

To process the dataset, run the script:

python preprocessing/preprocessor_audioonly.py

Note: Please specify dataset's directory, csv file, and output path inside preprocessor_audioonly.py. After running the script, the dataset directory looks like the data/sounds_of_silence_audioonly directory, with a JSON file (sounds_of_silence.json in this example) linking to the directory.

Inference

Pretrained weights

You can download the pretrained weights from authors here.

Step 1

  1. Go to model_1_silent_interval_detection directory
  2. Choose the audioonly_model
  3. Run
    CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_VISIBLE_DEVICES=0,1 python3 predict.py --ckpt 87 --save_results false --unknown_clean_signal true
  4. Run
    python3 create_data_from_pred.py --unknown_clean_signal true
  5. Outputs can be found in the model_output directory.

Step 2

  1. Go to model_2_audio_denoising directory
  2. Choose audio_denoising_model
  3. Run
    CUDA_DEVICE_ORDER=PCI_BUS_ID CUDA_VISIBLE_DEVICES=0 python3 predict.py --ckpt 24 --unknown_clean_signal true
  4. Outputs can be found in the model_output directory. The denoised result is called denoised_output.wav.

Command Parameters Explanation:

  1. --ckpt [number]: Refers to the pretrained model located in each models output directory (model_output/{model_name}/model/ckpt_epoch{number}.pth).
  2. --save_results [true|false]: If true, intermediate audio results and waveform figures will be saved. Recommend to leave it off to speed up the inference process.
  3. --unknown_clean_signal [true|false]: If running inference on external data (data without known clean signals), please set it to true.

Contact

E-mail: [email protected]




© 2020 The Trustees of Columbia University in the City of New York. This work may be reproduced and distributed for academic non-commercial purposes only without further authorization, but rightsholder otherwise reserves all rights.

Owner
Henry Xu
Henry Xu
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
AWS documentation corpus for zero-shot open-book question answering.

aws-documentation We present the AWS documentation corpus, an open-book QA dataset, which contains 25,175 documents along with 100 matched questions a

Sia Gholami 2 Jul 07, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022
Performant, differentiable reinforcement learning

deluca Performant, differentiable reinforcement learning Notes This is pre-alpha software and is undergoing a number of core changes. Updates to follo

Google 114 Dec 27, 2022
Reproduce ResNet-v2(Identity Mappings in Deep Residual Networks) with MXNet

Reproduce ResNet-v2 using MXNet Requirements Install MXNet on a machine with CUDA GPU, and it's better also installed with cuDNN v5 Please fix the ran

Wei Wu 531 Dec 04, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
Using Python to Play Cyberpunk 2077

CyberPython 2077 Using Python to Play Cyberpunk 2077 This repo will contain code from the Cyberpython 2077 video series on Youtube (youtube.

Harrison 118 Oct 18, 2022
Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement

Decompose to Adapt: Cross-domain Object Detection via Feature Disentanglement In this project, we proposed a Domain Disentanglement Faster-RCNN (DDF)

19 Nov 24, 2022
Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet)

Hierarchical Motion Encoder-Decoder Network for Trajectory Forecasting (HMNet) Our paper: https://arxiv.org/abs/2111.13324 We will release the complet

15 Oct 17, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
StyleGAN2 Webtoon / Anime Style Toonify

StyleGAN2 Webtoon / Anime Style Toonify Korea Webtoon or Japanese Anime Character Stylegan2 base high Quality 1024x1024 / 512x512 Generate and Transfe

121 Dec 21, 2022
Towards Implicit Text-Guided 3D Shape Generation (CVPR2022)

Towards Implicit Text-Guided 3D Shape Generation Towards Implicit Text-Guided 3D Shape Generation (CVPR2022) Code for the paper [Towards Implicit Text

55 Dec 16, 2022
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Müller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022