Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

Overview

SCAI-QReCC-21

[leaderboards] [registration] [forum] [contact] [SCAI]

Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

  • Submission deadline: September 8, 2021 Extended: September 15, 2021
  • Results announcement: September 30, 2021
  • Workshop presentations: October 8, 2021

Data

[Zenodo] [original]

File names here refer to the respective files hosted on [Zenodo].

The passage collection (passages.zip) is 27.5GB with 54M passages!

The input format for the task (scai-qrecc21-[toy,training,test]-questions[,-rewritten].json) is a JSON file:

, "Turn_no": X, "Question": " " }, ... ]">
[
  {
    "Conversation_no": 
    
     ,
    "Turn_no": X,
    "Question": "
     
      "
  }, ...
]

     
    

With X being the number of the question in the conversation. Questions with the same Conversation_no are from the same conversation.

The questions-rewritten.json-files contain human rewritten questions that can be used by systems that do not want to participate in question rewriting.

Submission

Register for the task using this form. We will then send you your TIRA login once it is ready.

The challenge is hosted on TIRA. Participants are encouraged to upload their code and run the evaluation on the VMs provided by the platform to ensure reproducibility of the results. It is also possible to upload the submission as a single JSON file.

The submission format for the task is a JSON file similar to the input (all Model_xxx-fields are optional and you can omit them from the submission, e.g. provide only Conversation_no, Turn_no and Model_answer to get the EM and F1 scores for the generated answers):

, "Turn_no": X, "Model_rewrite": " ", "Model_passages": { " ": , ... }, "Model_answer": " " }, ... ]">
[
  {
    "Conversation_no": 
       
        ,
    "Turn_no": X,
    "Model_rewrite": "
        
         ",
    "Model_passages": { 
      "
         
          ": 
          
           , ...
    },
    "Model_answer": "
           
            " }, ... ] 
           
          
         
        
       

Example: scai-qrecc21-naacl-baseline.zip

You can use the code of our simple baseline to get started.

Software Submission

We recommend participants to upload (through SSH or RDP) their software/system to their dedicated TIRA virtual machine (assigned after registration), so that their runs can be reproduced and so that they can be easily applied to different data (of same format) in the future. The mail send to you after registration gives you the credentials to access the TIRA web interface and your VM. If you cannot connect to your VM, ensure it is powered on in the TIRA web interface.

Your software is expected to accept two arguments:

  • An input directory (named $inputDataset in TIRA) that contains the questions.json input file and passages-index-anserini directory. The latter contains a full Anserini index of the passage collection. Note that you need to install openjdk-11-jdk-headless to use it. We may be able to add more of such indices on request.
  • An output directory (named $outputDir in TIRA) into which your software needs to place the submission as run.json.

Install your software to your VM. Then go to the TIRA web interface and click "Add software". Specify the command to run your software (see the image for the simple baseline).

IMPORTANT: To ensure reproducibility, create a "Software" in the TIRA web interface for each parameter setting that you consider a submission to the challenge.

Click on "Run" to execute your software for the selected input dataset. Your VM will not be accessible while your system is running, be detached from the internet (to ensure your software is fully installed in your virtual machine), and afterwards restored to the state before the run. Since the test set is rather large (the simple baseline takes nearly 11 hours to complete), we highly recommend you first test your software on the scai-qrecc21-toy-dataset-2021-07-20 input dataset. This dataset contains the first conversation (6 turns/questions) only. For the test-dataset, send us a mail at [email protected] so that we unblind your results.

TIRA Interface: VM status and submission

Then go to the "Runs" section below and click on the blue (i)-icon of the software run to check the software output. You can also download the run from there.

NOTE: By submitting your software you retain full copyrights. You agree to grant us usage rights for evaluation of the corresponding data generated by your software. We agree not to share your software with a third party or use it for any purpose other than research.

Run Submission

You can upload a JSON file as a submission at https://www.tira.io/run-upload-scai-qrecc21.

TIRA Interface: VM status and submission

Please specify the name and a description of your run in the form. After a successful upload, the page will redirect you to the overview of all your submissions where you should evaluate your run to verify that your run is valid. At the "Runs" section, you can click on the blue (i)-icon to double-check your upload. You can also download the run from there.

Evaluation

[script]

Once you run your software or uploaded your run, "Run" the evaluator on that run through the TIRA web interface (below the software; works out-of-the-box).

TIRA Interface: Evaluation

Then go to the "Runs" section below and click on the blue (i)-icon of the evaluator run to see your scores.

Ground truth

We use the QReCC paper annotations in the initial phase, and will update them with alternative answer spans and passages by pooling and crowdsourcing the relevance judgements over the results submitted by the challenge participants (similar to the TREC evaluation setup).

Metrics

We use the same metrics as the QReCC paper, but may add more for the final evaluation: ROUGE1-R for question rewriting, Mean Reciprocal Rank (MRR) for passage retrieval, and F1 and Exact Match for question answering.

Baselines

We provide the following baselines for comparison:

  • scai-qrecc21-simple-baseline: BM25 baseline for passage retrieval using original conversational questions without rewriting. We recommend to use this code as a boilerplate to kickstart your own submission using the VM.
  • scai-qrecc21-naacl-baseline: results for the end-to-end approach using supervised question rewriting and QA models reported in the QReCC paper (accepted at NAACL'21). This sample run is available on Zenodo as scai-qrecc21-naacl-baseline.zip.

Note that the baseline results differ from the ones reported in the paper since we made several corrections to the evaluation script and the ground truth annotations:

  • We excluded the samples for which the ground truth is missing from the evaluation (i.e., no relevant passages or no answer text or no rewrite provided by the human annotators)

  • We removed 5,251 passages judgements annotated by the heuristic as relevant for the short answers with lengths <= 5 since these matches are often trivial and unrelated, e.g., the same noun phrase appearing in different contexts.

Resources

Some useful links to get you started on a new conversational open-domain QA system:

Conversational Passage Retrieval

Answer Generation

Passage Retrieval

Conversational Question Reformulation

This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
Self-Supervised Methods for Noise-Removal

SSMNR | Self-Supervised Methods for Noise Removal Image denoising is the task of removing noise from an image, which can be formulated as the task of

1 Jan 16, 2022
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022
Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Single Image Deraining Using Bilateral Recurrent Network Introduction Single image deraining has received considerable progress based on deep convolut

23 Aug 10, 2022
Pytorch implementation of

EfficientTTS Unofficial Pytorch implementation of "EfficientTTS: An Efficient and High-Quality Text-to-Speech Architecture"(arXiv). Disclaimer: Somebo

Liu Songxiang 109 Nov 16, 2022
Playing around with FastAPI and streamlit to create a YoloV5 object detector

FastAPI-Streamlit-based-YoloV5-detector Playing around with FastAPI and streamlit to create a YoloV5 object detector It turns out that a User Interfac

2 Jan 20, 2022
[CVPR 2022] Deep Equilibrium Optical Flow Estimation

Deep Equilibrium Optical Flow Estimation This is the official repo for the paper Deep Equilibrium Optical Flow Estimation (CVPR 2022), by Shaojie Bai*

CMU Locus Lab 136 Dec 18, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022