Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

Overview

SCAI-QReCC-21

[leaderboards] [registration] [forum] [contact] [SCAI]

Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

  • Submission deadline: September 8, 2021 Extended: September 15, 2021
  • Results announcement: September 30, 2021
  • Workshop presentations: October 8, 2021

Data

[Zenodo] [original]

File names here refer to the respective files hosted on [Zenodo].

The passage collection (passages.zip) is 27.5GB with 54M passages!

The input format for the task (scai-qrecc21-[toy,training,test]-questions[,-rewritten].json) is a JSON file:

, "Turn_no": X, "Question": " " }, ... ]">
[
  {
    "Conversation_no": 
    
     ,
    "Turn_no": X,
    "Question": "
     
      "
  }, ...
]

     
    

With X being the number of the question in the conversation. Questions with the same Conversation_no are from the same conversation.

The questions-rewritten.json-files contain human rewritten questions that can be used by systems that do not want to participate in question rewriting.

Submission

Register for the task using this form. We will then send you your TIRA login once it is ready.

The challenge is hosted on TIRA. Participants are encouraged to upload their code and run the evaluation on the VMs provided by the platform to ensure reproducibility of the results. It is also possible to upload the submission as a single JSON file.

The submission format for the task is a JSON file similar to the input (all Model_xxx-fields are optional and you can omit them from the submission, e.g. provide only Conversation_no, Turn_no and Model_answer to get the EM and F1 scores for the generated answers):

, "Turn_no": X, "Model_rewrite": " ", "Model_passages": { " ": , ... }, "Model_answer": " " }, ... ]">
[
  {
    "Conversation_no": 
       
        ,
    "Turn_no": X,
    "Model_rewrite": "
        
         ",
    "Model_passages": { 
      "
         
          ": 
          
           , ...
    },
    "Model_answer": "
           
            " }, ... ] 
           
          
         
        
       

Example: scai-qrecc21-naacl-baseline.zip

You can use the code of our simple baseline to get started.

Software Submission

We recommend participants to upload (through SSH or RDP) their software/system to their dedicated TIRA virtual machine (assigned after registration), so that their runs can be reproduced and so that they can be easily applied to different data (of same format) in the future. The mail send to you after registration gives you the credentials to access the TIRA web interface and your VM. If you cannot connect to your VM, ensure it is powered on in the TIRA web interface.

Your software is expected to accept two arguments:

  • An input directory (named $inputDataset in TIRA) that contains the questions.json input file and passages-index-anserini directory. The latter contains a full Anserini index of the passage collection. Note that you need to install openjdk-11-jdk-headless to use it. We may be able to add more of such indices on request.
  • An output directory (named $outputDir in TIRA) into which your software needs to place the submission as run.json.

Install your software to your VM. Then go to the TIRA web interface and click "Add software". Specify the command to run your software (see the image for the simple baseline).

IMPORTANT: To ensure reproducibility, create a "Software" in the TIRA web interface for each parameter setting that you consider a submission to the challenge.

Click on "Run" to execute your software for the selected input dataset. Your VM will not be accessible while your system is running, be detached from the internet (to ensure your software is fully installed in your virtual machine), and afterwards restored to the state before the run. Since the test set is rather large (the simple baseline takes nearly 11 hours to complete), we highly recommend you first test your software on the scai-qrecc21-toy-dataset-2021-07-20 input dataset. This dataset contains the first conversation (6 turns/questions) only. For the test-dataset, send us a mail at [email protected] so that we unblind your results.

TIRA Interface: VM status and submission

Then go to the "Runs" section below and click on the blue (i)-icon of the software run to check the software output. You can also download the run from there.

NOTE: By submitting your software you retain full copyrights. You agree to grant us usage rights for evaluation of the corresponding data generated by your software. We agree not to share your software with a third party or use it for any purpose other than research.

Run Submission

You can upload a JSON file as a submission at https://www.tira.io/run-upload-scai-qrecc21.

TIRA Interface: VM status and submission

Please specify the name and a description of your run in the form. After a successful upload, the page will redirect you to the overview of all your submissions where you should evaluate your run to verify that your run is valid. At the "Runs" section, you can click on the blue (i)-icon to double-check your upload. You can also download the run from there.

Evaluation

[script]

Once you run your software or uploaded your run, "Run" the evaluator on that run through the TIRA web interface (below the software; works out-of-the-box).

TIRA Interface: Evaluation

Then go to the "Runs" section below and click on the blue (i)-icon of the evaluator run to see your scores.

Ground truth

We use the QReCC paper annotations in the initial phase, and will update them with alternative answer spans and passages by pooling and crowdsourcing the relevance judgements over the results submitted by the challenge participants (similar to the TREC evaluation setup).

Metrics

We use the same metrics as the QReCC paper, but may add more for the final evaluation: ROUGE1-R for question rewriting, Mean Reciprocal Rank (MRR) for passage retrieval, and F1 and Exact Match for question answering.

Baselines

We provide the following baselines for comparison:

  • scai-qrecc21-simple-baseline: BM25 baseline for passage retrieval using original conversational questions without rewriting. We recommend to use this code as a boilerplate to kickstart your own submission using the VM.
  • scai-qrecc21-naacl-baseline: results for the end-to-end approach using supervised question rewriting and QA models reported in the QReCC paper (accepted at NAACL'21). This sample run is available on Zenodo as scai-qrecc21-naacl-baseline.zip.

Note that the baseline results differ from the ones reported in the paper since we made several corrections to the evaluation script and the ground truth annotations:

  • We excluded the samples for which the ground truth is missing from the evaluation (i.e., no relevant passages or no answer text or no rewrite provided by the human annotators)

  • We removed 5,251 passages judgements annotated by the heuristic as relevant for the short answers with lengths <= 5 since these matches are often trivial and unrelated, e.g., the same noun phrase appearing in different contexts.

Resources

Some useful links to get you started on a new conversational open-domain QA system:

Conversational Passage Retrieval

Answer Generation

Passage Retrieval

Conversational Question Reformulation

PyTorch implementation for the paper Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime

Visual Representation Learning with Self-Supervised Attention for Low-Label High-Data Regime Created by Prarthana Bhattacharyya. Disclaimer: This is n

Prarthana Bhattacharyya 5 Nov 08, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
Brain tumor detection using Convolution-Neural Network (CNN)

Detect and Classify Brain Tumor using CNN. A system performing detection and classification by using Deep Learning Algorithms using Convolution-Neural Network (CNN).

assia 1 Feb 07, 2022
Differentiable Wavetable Synthesis

Differentiable Wavetable Synthesis

4 Feb 11, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
Official implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" (ICCV Workshops 2021: RSL-CV).

Official PyTorch implementation of "Synthetic Temporal Anomaly Guided End-to-End Video Anomaly Detection" This is the implementation of the paper "Syn

Marcella Astrid 11 Oct 07, 2022
This repository attempts to replicate the SqueezeNet architecture and implement the same on an image classification task.

SqueezeNet-Implementation This repository attempts to replicate the SqueezeNet architecture using TensorFlow discussed in the research paper: "Squeeze

Rohan Mathur 3 Dec 13, 2022
Automatic voice-synthetised summaries of latest research papers on arXiv

PaperWhisperer PaperWhisperer is a Python application that keeps you up-to-date with research papers. How? It retrieves the latest articles from arXiv

Valerio Velardo 124 Dec 20, 2022
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

LV-BERT Introduction In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, pleas

Weihao Yu 14 Aug 24, 2022
Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis (CVPR2022)

Multi-View Consistent Generative Adversarial Networks for 3D-aware Image Synthesis Multi-View Consistent Generative Adversarial Networks for 3D-aware

Xuanmeng Zhang 78 Dec 10, 2022
Summary Explorer is a tool to visually explore the state-of-the-art in text summarization.

Summary Explorer Summary Explorer is a tool to visually inspect the summaries from several state-of-the-art neural summarization models across multipl

Webis 42 Aug 14, 2022
This is an open source library implementing hyperbox-based machine learning algorithms

hyperbox-brain is a Python open source toolbox implementing hyperbox-based machine learning algorithms built on top of scikit-learn and is distributed

Complex Adaptive Systems (CAS) Lab - University of Technology Sydney 21 Dec 14, 2022
Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Julia package for contraction of tensor networks, based on the sweep line algorithm outlined in the paper General tensor network decoding of 2D Pauli codes

Christopher T. Chubb 35 Dec 21, 2022
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022