Official Pytorch implementation of 'RoI Tanh-polar Transformer Network for Face Parsing in the Wild.'

Overview

ibug.face_parsing

RoI Tanh-polar Transformer Network for Face Parsing in the Wild.

Note: If you use this repository in your research, we kindly rquest you to cite the following paper:

@article{lin2021roi,
title = {RoI Tanh-polar transformer network for face parsing in the wild},
journal = {Image and Vision Computing},
volume = {112},
pages = {104190},
year = {2021},
issn = {0262-8856},
doi = {https://doi.org/10.1016/j.imavis.2021.104190},
url = {https://www.sciencedirect.com/science/article/pii/S0262885621000950},
author = {Yiming Lin and Jie Shen and Yujiang Wang and Maja Pantic},
keywords = {Face parsing, In-the-wild dataset, Head pose augmentation, Tanh-polar representation},
}

Dependencies

How to Install

git clone https://github.com/hhj1897/face_parsing
cd face_parsing
git lfs pull
pip install -e .

How to Test

python face_warping_test.py -i 0 -e rtnet50 --decoder fcn -n 11 -d cuda:0

Command-line arguments:

-i VIDEO: Index of the webcam to use (start from 0) or
          path of the input video file
-d: Device to be used by PyTorch (default=cuda:0)
-e: Encoder (default=rtnet50)
--decoder: Decoder (default=fcn)
-n: Number of facial classes, can be 11 or 14 for now (default=11)

iBugMask Dataset

The training and testing images, bounding boxes, landmarks, and parsing maps can be found in the following:

Label Maps

Label map for 11 classes:

0 : background
1 : skin (including face and scalp)
2 : left_eyebrow
3 : right_eyebrow
4 : left_eye
5 : right_eye
6 : nose
7 : upper_lip
8 : inner_mouth
9 : lower_lip
10 : hair

Label map for 14 classes:

0 : background
1 : skin (including face and scalp)
2 : left_eyebrow
3 : right_eyebrow
4 : left_eye
5 : right_eye
6 : nose
7 : upper_lip
8 : inner_mouth
9 : lower_lip
10 : hair
11 : left_ear
12 : right_ear
13 : glasses

Visualisation

You might also like...
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).
VSR-Transformer - This paper proposes a new Transformer for video super-resolution (called VSR-Transformer).

VSR-Transformer By Jiezhang Cao, Yawei Li, Kai Zhang, Luc Van Gool This paper proposes a new Transformer for video super-resolution (called VSR-Transf

A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing

CSGStumpNet The official implementation of CSG-Stump: A Learning Friendly CSG-Like Representation for Interpretable Shape Parsing Paper | Project page

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

Pytorch implementation of face attention network
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

Non-Official Pytorch implementation of
Non-Official Pytorch implementation of "Face Identity Disentanglement via Latent Space Mapping" https://arxiv.org/abs/2005.07728 Using StyleGAN2 instead of StyleGAN

Face Identity Disentanglement via Latent Space Mapping - Implement in pytorch with StyleGAN 2 Description Pytorch implementation of the paper Face Ide

Official PyTorch implementation of
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.
Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation.

SAFA: Structure Aware Face Animation (3DV2021) Official Pytorch Implementation of 3DV2021 paper: SAFA: Structure Aware Face Animation. Getting Started

Comments
  • cannot convert to tflite

    cannot convert to tflite

    Hello, thanks for sharing this great study. I'm researching face parsing and i'm trying to port to Tflite and compare the performance, but I can't since this is using special ops - it uses "grid sample"

    What do you suggest I can do in order to test on Tflite/CoreML?

    Will training on Lapa dataset improve the accuracy? if not why?

    opened by ofirkris 1
  • _pickle.UnpicklingError: invalid load key, 'v'

    _pickle.UnpicklingError: invalid load key, 'v'

    How to fix it

    Traceback (most recent call last): File "face_parsing_test.py", line 141, in main() File "face_parsing_test.py", line 50, in main face_parser = RTNetPredictor( File "/home/ml/radishevskii/face_parsing/ibug/face_parsing/parser.py", line 81, in init ckpt = torch.load(ckpt, 'cpu') File "/home/ml/radishevskii/anaconda3/envs/inga_vlad/lib/python3.8/site-packages/torch/serialization.py", line 593, in load return _legacy_load(opened_file, map_location, pickle_module, **pickle_load_args) File "/home/ml/radishevskii/anaconda3/envs/inga_vlad/lib/python3.8/site-packages/torch/serialization.py", line 762, in _legacy_load magic_number = pickle_module.load(f, **pickle_load_args) _pickle.UnpicklingError: invalid load key, 'v'.

    opened by vladradishevsky 1
  • face parsing label

    face parsing label

    It seems that the dataset released contains only the annotation of 11 facial parts. However, the repository also provide the model trained with dataset containing labels of 14 facial parts. Thus, we wonder how can we get the labels of 14 facial parts. Can you provide the download link? Thanks!

    opened by HowToNameMe 0
Releases(v0.2.0)
Owner
Jie Shen
Jie Shen
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
This is code of book "Learn Deep Learning with PyTorch"

深度学习入门之PyTorch Learn Deep Learning with PyTorch 非常感谢您能够购买此书,这个github repository包含有深度学习入门之PyTorch的实例代码。由于本人水平有限,在写此书的时候参考了一些网上的资料,在这里对他们表示敬意。由于深度学习的技术在

Xingyu Liao 2.5k Jan 04, 2023
Code for paper: Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks

Group-CAM By Zhang, Qinglong and Rao, Lu and Yang, Yubin [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the o

zhql 98 Nov 16, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Alex Pashevich 62 Dec 24, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

DV Lab 137 Dec 14, 2022
Fairness Metrics: All you need to know

Fairness Metrics: All you need to know Testing machine learning software for ethical bias has become a pressing current concern. Recent research has p

Anonymous2020 1 Jan 17, 2022
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow implementation of SERank model. The code is developed based on TF-Ranking.

SERank An efficient and effective learning to rank algorithm by mining information across ranking candidates. This repository contains the tensorflow

Zhihu 44 Oct 20, 2022
SimDeblur is a simple framework for image and video deblurring, implemented by PyTorch

SimDeblur (Simple Deblurring) is an open source framework for image and video deblurring toolbox based on PyTorch, which contains most deep-learning based state-of-the-art deblurring algorithms. It i

220 Jan 07, 2023
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
The code for paper Efficiently Solve the Max-cut Problem via a Quantum Qubit Rotation Algorithm

Quantum Qubit Rotation Algorithm Single qubit rotation gates $$ U(\Theta)=\bigotimes_{i=1}^n R_x (\phi_i) $$ QQRA for the max-cut problem This code wa

SheffieldWang 0 Oct 18, 2021
When in Doubt: Improving Classification Performance with Alternating Normalization

When in Doubt: Improving Classification Performance with Alternating Normalization Findings of EMNLP 2021 Menglin Jia, Austin Reiter, Ser-Nam Lim, Yoa

Menglin Jia 13 Nov 06, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022