TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Overview

Training CIFAR-10 with TensorFlow2(TF2)

TensorFlow 2.4 Python 3.8 License

TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset.

Architectures

Prerequisites

  • Python 3.8+
  • TensorFlow 2.4.0+

Training

Start training with:

python train.py --model resnet18

You can manually resume the training with:

python train.py --model resnet18 --resume

Testing

python test.py --model resnet18

Accuracy

Model Acc. Param.
LeNet 67.85% 0.06M
AlexNet 78.81% 21.6M
VGG11 92.61% 9.2M
VGG13 94.31% 9.4M
VGG16 94.27% 14.7M
VGG19 93.65% 20.1M
ResNet18 95.37% 11.2M
ResNet34 95.48% 21.3M
ResNet50 95.41% 23.6M
ResNet101 95.44% 42.6M
ResNet152 95.29% 58.3M
DenseNet121 95.37% 7.0M
DenseNet169 95.10% 12.7M
DenseNet201 94.79% 18.3M
PreAct-ResNet18 94.08% 11.2M
PreAct-ResNet34 94.76% 21.3M
PreAct-ResNet50 94.81% 23.6M
PreAct-ResNet101 94.95% 42.6M
PreAct-ResNet152 95.07% 58.3M
SE-ResNet18 95.44% 11.3M
SE-ResNet34 95.30% 21.5M
SE-ResNet50 95.76% 26.1M
SE-ResNet101 95.40% 47.3M
SE-ResNet152 95.29% 64.9M
SE-PreAct-ResNet18 94.54% 11.3M
SE-PreAct-ResNet34 95.30% 21.5M
SE-PreAct-ResNet50 94.22% 26.1M
SE-PreAct-ResNet101 94.34% 47.3M
SE-PreAct-ResNet152 94.28% 64.9M
MobileNet 92.34% 3.2M
MobileNetV2 94.03% 2.3M

Note

All abovementioned models are available. To specify the model, please use the model name without the hyphen. For instance, to train with SE-PreAct-ResNet18, you can run the following script:

python train.py --model sepreactresnet18

If you suffer from loss=nan issue, you can circumvent it by using a smaller learning rate, i.e.

python train.py --model sepreactresnet18 --lr 5e-2
Owner
Chia-Hung Yuan
Chia-Hung Yuan
OMLT: Optimization and Machine Learning Toolkit

OMLT is a Python package for representing machine learning models (neural networks and gradient-boosted trees) within the Pyomo optimization environment.

C⚙G - Imperial College London 179 Jan 02, 2023
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 279 Jan 04, 2023
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
QuakeLabeler is a Python package to create and manage your seismic training data, processes, and visualization in a single place — so you can focus on building the next big thing.

QuakeLabeler Quake Labeler was born from the need for seismologists and developers who are not AI specialists to easily, quickly, and independently bu

Hao Mai 15 Nov 04, 2022
Mall-Customers-Segmentation - Customer Segmentation Using K-Means Clustering

Overview Customer Segmentation is one the most important applications of unsupervised learning. Using clustering techniques, companies can identify th

NelakurthiSudheer 2 Jan 03, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
Pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments

Cascaded-FCN This repository contains the pre-trained models for a Cascaded-FCN in caffe and tensorflow that segments the liver and its lesions out of

300 Nov 22, 2022
This repository contains the implementation of the paper Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans

Contrastive Instance Association for 4D Panoptic Segmentation using Sequences of 3D LiDAR Scans This repository contains the implementation of the pap

Photogrammetry & Robotics Bonn 40 Dec 01, 2022
Official Implementation of HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation

HRDA: Context-Aware High-Resolution Domain-Adaptive Semantic Segmentation by Lukas Hoyer, Dengxin Dai, and Luc Van Gool [Arxiv] [Paper] Overview Unsup

Lukas Hoyer 149 Dec 28, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
CoSMA: Convolutional Semi-Regular Mesh Autoencoder. From Paper "Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes"

Mesh Convolutional Autoencoder for Semi-Regular Meshes of Different Sizes Implementation of CoSMA: Convolutional Semi-Regular Mesh Autoencoder arXiv p

Fraunhofer SCAI 10 Oct 11, 2022
This is a vision-based 3d model manipulation and control UI

Manipulation of 3D Models Using Hand Gesture This program allows user to manipulation 3D models (.obj format) with their hands. The project support bo

Cortic Technology Corp. 43 Oct 23, 2022
This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

This is the codebase for Diffusion Models Beat GANS on Image Synthesis.

OpenAI 3k Dec 26, 2022
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022