Anonymize BLM Protest Images

Overview

Anonymize BLM Protest Images

This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Use our interface at blm.stanford.edu.

What's happened? Arrests at protests from public images

Over the past weeks, we have seen an increasing number of arrests at BLM protests, with images circulating around the web enabling automatic identification of those individuals and subsequent arrests to hamper protest activity. This primarily concerns social media protest images.

Numerous applications have emerged in response to this threat that aim to anonymize protest images and enable people to continue protesting in safety. Of course, this would require a shift on the public's part to recognize this issue and an easy and effective method for anonymization to surface. In an ideal world, platforms like Twitter would enable an on-platform solution.

So what's your goal? AI to help alleviate some of the worst parts of AI

The goal of this work is to leverage our group's knowledge of facial recognition AI to offer the most effective anonymization tool that evades the state of the art in facial recognition technology. AI facial recognition models can still recognize blurred faces. This work tries to discourage people from trying to recognize or reconstruct pixelated faces by masking people with an opaque mask. We use the BLM fist emoji as that mask for solidarity. While posting anonymized images does not delete the originals, we are starting with awareness and hope Twitter and other platforms would offer an on-platform solution (might be a tall order, but one can hope).

Importantly, this application does not save images. We hope the transparency of this repository will allow for community input. The Twitter bot posts anonymized images based on the Fair Use policy; however, if your image is used and you'd like it to be taken down, we will do our best to do so immediately.

Q&A

How can AI models still recognize blurred faces, even if they cannot reconstruct them perfectly? Recognition is different from reconstruction. Facial recognition technology can still identify many blurred faces and is better than humans at it. Reconstruction is a much more arduous task (see the difference between discriminative and generative models, if you're curious). Reconstruction has recently been exposed to be very biased (see lessons from PULSE). Blurring faces has the added threat of encouraging certain people or groups to de-anonymize images through reconstruction or directly identifying individuals through recognition.

Do you save my pre-anonymized images? No. The goal of this tool is to protect your privacy and saving the images would be antithetical to that. We don’t save any images you give us or any of the anonymized images created from the AI model (sometimes they’re not perfect, so saving them would still not be great!). If you like technical details: the image is passed into the AI model on the cloud, then the output is passed back and directly displayed in a base64 jpg on your screen.

The bot tweeted my image with the fists on it. Can you take it down? Yes, absolutely. Please DM the bot or reply directly.

Can you talk a bit more about your AI technical approach? We build on state-of-the-art crowd counting AI, because it offers huge advantages to anonymizing crowds over traditional facial recognition models. Traditional methods can only find a few (less than 20 or even less than 5) in a single image. Crowds of BLM protesters can number in the hundreds and thousands, and certainly around 50, in a single image. The model we use in this work has been trained on over 1.2 million people in the open-sourced research dataset, called QNRF, with crowds ranging from the few to the the thousands. False negatives are the worst error in our case. The pretrained model weights live in the LSC-CNN that we build on - precisely, it's in a Google Drive folder linked from their README.

Other amazing tools

We would love to showcase other parallel efforts (please propose any we have missed here!). Not only that, if this is not the tool for you, please check these tools out too:

And more...

Built by and built on

  1. This work is built by the Stanford Machine Learning Group. We are Krishna Patel, JQ, and Sharon Zhou.

  2. Flask-Postgres Template by @sharonzhou

https://github.com/sharonzhou/flask-postgres-template
  1. Image Uploader by @christianbayer
https://github.com/christianbayer/image-uploader
  1. LSC-CNN by @vlad3996
https://github.com/vlad3996/lsc-cnn

Paper associated with this work:

@article{LSCCNN20,
    Author = {Sam, Deepak Babu and Peri, Skand Vishwanath and Narayanan Sundararaman, Mukuntha,  and Kamath, Amogh and Babu, R. Venkatesh},
    Title = {Locate, Size and Count: Accurately Resolving People in Dense Crowds via Detection},
    Journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
    Year = {2020}
}

Offline mode

See the offline branch to run this work offline using Docker. This awesome code was contributed by @matthiaszimmermann.

Owner
Stanford Machine Learning Group
Our mission is to significantly improve people's lives through our work in AI
Stanford Machine Learning Group
HAR-stacked-residual-bidir-LSTMs - Deep stacked residual bidirectional LSTMs for HAR

HAR-stacked-residual-bidir-LSTM The project is based on this repository which is presented as a tutorial. It consists of Human Activity Recognition (H

Guillaume Chevalier 287 Dec 27, 2022
Torch-based tool for quantizing high-dimensional vectors using additive codebooks

Trainable multi-codebook quantization This repository implements a utility for use with PyTorch, and ideally GPUs, for training an efficient quantizer

Daniel Povey 41 Jan 07, 2023
Agile SVG maker for python

Agile SVG Maker Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with differe

SemiWaker 4 Sep 25, 2022
An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

An implementation of the methods presented in Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data.

Andrew Jesson 9 Apr 04, 2022
Object-aware Contrastive Learning for Debiased Scene Representation

Object-aware Contrastive Learning Official PyTorch implementation of "Object-aware Contrastive Learning for Debiased Scene Representation" by Sangwoo

43 Dec 14, 2022
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning

TransZero++ This repository contains the testing code for the paper "TransZero++: Cross Attribute-guided Transformer for Zero-Shot Learning" submitted

Shiming Chen 6 Aug 16, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN.

Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU.

Phil Wang 2.3k Jan 09, 2023
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
Continual Learning of Electronic Health Records (EHR).

Continual Learning of Longitudinal Health Records Repo for reproducing the experiments in Continual Learning of Longitudinal Health Records (2021). Re

Jacob 7 Oct 21, 2022
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
particle tracking model, works with the ROMS output file(qck.nc, his.nc)

particle-tracking-model-for-ROMS particle tracking model, works with the ROMS output file(qck.nc, his.nc) description this is a 2-dimensional particle

xusheng 1 Jan 11, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Convex optimization for fun and profit.

CFMM Optimal Routing This repository contains the code needed to generate the figures used in the paper Optimal Routing for Constant Function Market M

Guillermo Angeris 183 Dec 29, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022