MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

Overview

MSG-Transformer

Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens,
by Jiemin Fang, Lingxi Xie, Xinggang Wang, Xiaopeng Zhang, Wenyu Liu, Qi Tian.

We propose a novel Transformer architecture, named MSG-Transformer, which enables efficient and flexible information exchange by introducing MSG tokens to sever as the information hub.


Transformers have offered a new methodology of designing neural networks for visual recognition. Compared to convolutional networks, Transformers enjoy the ability of referring to global features at each stage, yet the attention module brings higher computational overhead that obstructs the application of Transformers to process high-resolution visual data. This paper aims to alleviate the conflict between efficiency and flexibility, for which we propose a specialized token for each region that serves as a messenger (MSG). Hence, by manipulating these MSG tokens, one can flexibly exchange visual information across regions and the computational complexity is reduced. We then integrate the MSG token into a multi-scale architecture named MSG-Transformer. In standard image classification and object detection, MSG-Transformer achieves competitive performance and the inference on both GPU and CPU is accelerated. block arch

Updates

  • 2021.6.2 Code for ImageNet classification is released. Pre-trained models will be available soon.

Requirements

  • PyTorch==1.7
  • timm==0.3.2
  • Apex
  • opencv-python>=3.4.1.15
  • yacs==0.1.8

Data Preparation

Please organize your ImageNet dataset as followins.

path/to/ImageNet
|-train
| |-cls1
| | |-img1
| | |-...
| |-cls2
| | |-img2
| | |-...
| |-...
|-val
  |-cls1
  | |-img1
  | |-...
  |-cls2
  | |-img2
  | |-...
  |-...

Training

Train MSG-Transformers on ImageNet-1k with the following script.
For MSG-Transformer-T, run

python -m torch.distributed.launch --nproc_per_node 8 main.py \
    --cfg configs/msg_tiny_p4_win7_224.yaml --data-path <dataset-path> --batch-size 128

For MSG-Transformer-S, run

python -m torch.distributed.launch --nproc_per_node 8 main.py \
    --cfg configs/msg_small_p4_win7_224.yaml --data-path <dataset-path> --batch-size 128

For MSG-Transformer-B, we recommend running the following script on two nodes, where each node is with 8 GPUs.

python -m torch.distributed.launch --nproc_per_node 8 \
    --nnodes=2 --node_rank=<node-rank> --master_addr=<ip-address> --master_port=<port> \
    main.py --cfg configs/msg_base_p4_win7_224.yaml --data-path <dataset-path> --batch-size 64

Evaluation

Run the following script to evaluate the pre-trained model.

python -m torch.distributed.launch --nproc_per_node <GPU-number> main.py \
    --cfg <model-config> --data-path <dataset-path> --batch-size <batch-size> \
    --resume <checkpoint> --eval

Main Results

ImageNet-1K

Model Input size Params FLOPs GPU throughput (images/s) CPU Latency Top-1 ACC (%)
MSG-Trans-T 224 28M 4.6G 696.7 150ms 80.9
MSG-Trans-S 224 50M 8.9G 401.0 262ms 83.0
MSG-Trans-B 224 88M 15.8G 262.6 437ms 83.5

MS-COCO

Method box mAP mask mAP Params FLOPs FPS
MSG-Trans-T 50.3 43.6 86M 748G 9.4
MSG-Trans-S 51.8 44.8 107M 842G 7.5
MSG-Trans-B 51.9 45.0 145M 990G 6.2

Acknowledgements

This repository is based on Swin-Transformer and timm. Thanks for their contributions to the community.

Citation

If you find this repository/work helpful in your research, welcome to cite the paper.

@article{fang2021msgtransformer,
  title={MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens},
  author={Jiemin Fang and Lingxi Xie and Xinggang Wang and Xiaopeng Zhang and Wenyu Liu and Qi Tian},
  journal={arXiv:2105.15168},
  year={2021}
}
Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST
Hust Visual Learning Team
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP

scdlpicker SeisComP/SeisBench interface to enable deep-learning (re)picking in SeisComP Objective This is a simple deep learning (DL) repicker module

Joachim Saul 6 May 13, 2022
PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks

AttentionHTR PyTorch implementation of an end-to-end Handwritten Text Recognition (HTR) system based on attention encoder-decoder networks. Scene Text

Dmitrijs Kass 31 Dec 22, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
TransMVSNet: Global Context-aware Multi-view Stereo Network with Transformers.

TransMVSNet This repository contains the official implementation of the paper: "TransMVSNet: Global Context-aware Multi-view Stereo Network with Trans

旷视研究院 3D 组 155 Dec 29, 2022
Mixup for Supervision, Semi- and Self-Supervision Learning Toolbox and Benchmark

OpenSelfSup News Downstream tasks now support more methods(Mask RCNN-FPN, RetinaNet, Keypoints RCNN) and more datasets(Cityscapes). 'GaussianBlur' is

AI Lab, Westlake University 332 Jan 03, 2023
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
Implementation of the paper "Generating Symbolic Reasoning Problems with Transformer GANs"

Generating Symbolic Reasoning Problems with Transformer GANs This is the implementation of the paper Generating Symbolic Reasoning Problems with Trans

Reactive Systems Group 1 Apr 18, 2022
An implementation of "Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport"

Optex An implementation of Optimal Textures: Fast and Robust Texture Synthesis and Style Transfer through Optimal Transport for TU Delft CS4240. You c

Hans Brouwer 33 Jan 05, 2023
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
Code for "Learning Graph Cellular Automata"

Learning Graph Cellular Automata This code implements the experiments from the NeurIPS 2021 paper: "Learning Graph Cellular Automata" Daniele Grattaro

Daniele Grattarola 37 Oct 26, 2022
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Segmentation Training Pipeline

Segmentation Training Pipeline This package is a part of Musket ML framework. Reasons to use Segmentation Pipeline Segmentation Pipeline was developed

Musket ML 52 Dec 12, 2022
Adversarial Graph Augmentation to Improve Graph Contrastive Learning

ADGCL : Adversarial Graph Augmentation to Improve Graph Contrastive Learning Introduction This repo contains the Pytorch [1] implementation of Adversa

susheel suresh 62 Nov 19, 2022
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
USAD - UnSupervised Anomaly Detection on multivariate time series

USAD - UnSupervised Anomaly Detection on multivariate time series Scripts and utility programs for implementing the USAD architecture. Implementation

116 Jan 04, 2023