Fuzzing the Kernel Using Unicornafl and AFL++

Overview

Unicorefuzz

Build Status code-style: black

Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19.

Is it any good?

yes.

AFL Screenshot

Unicorefuzz Setup

  • Install python2 & python3 (ucf uses python3, however qemu/unicorn needs python2 to build)
  • Run ./setup.sh, preferrably inside a Virtualenv (else python deps will be installed using --user). During install, afl++ and uDdbg as well as python deps will be pulled and installed.
  • Enjoy ucf

Upgrading

When upgrading from an early version of ucf:

  • Unicorefuzz will notify you of config changes and new options automatically.
  • Alternatively, run ucf spec to output a commented config.py spec-like element.
  • probe_wrapper.py is now ucf attach.
  • harness.py is now named ucf emu.
  • The song remains the same.

Debug Kernel Setup (Skip this if you know how this works)

  • Create a qemu-img and install your preferred OS on there through qemu
  • An easy way to get a working userspace up and running in QEMU is to follow the steps described by syzkaller, namely create-image.sh
  • For kernel customization you might want to clone your preferred kernel version and compile it on the host. This way you can also compile your own kernel modules (e.g. example_module).
  • In order to find out the address of a loaded module in the guest OS you can use cat /proc/modules to find out the base address of the module location. Use this as the offset for the function where you want to break. If you specify MODULE and BREAK_OFFSET in the config.py, it should use ./get_mod_addr.sh to start it automated.
  • You can compile the kernel with debug info. When you have compiled the linux kernel you can start gdb from the kernel folder with gdb vmlinux. After having loaded other modules you can use the lx-symbols command in gdb to load the symbols for the other modules (make sure the .ko files of the modules are in your kernel folder). This way you can just use something like break function_to_break to set breakpoints for the required functions.
  • In order to compile a custom kernel for Arch, download the current Arch kernel and set the .config to the Arch default. Then set DEBUG_KERNEL=y, DEBUG_INFO=y, GDB_SCRIPTS=y (for convenience), KASAN=y, KASAN_EXTRA=y. For convenience, we added a working example_config that can be place to the linux dir.
  • To only get necessary kernel modules boot the current system and execute lsmod > mylsmod and copy the mylsmod file to your host system into the linux kernel folder that you downloaded. Then you can use make LSMOD=mylsmod localmodconfig to only make the kernel modules that are actually needed by the guest system. Then you can compile the kernel like normal with make. Then mount the guest file system to /mnt and use make modules_install INSTALL_MOD_PATH=/mnt. At last you have to create a new initramfs, which apparently has to be done on the guest system. Here use mkinitcpio -k <folder in /lib/modules/...> -g <where to put initramfs>. Then you just need to copy that back to the host and let qemu know where your kernel and the initramfs are located.
  • Setting breakpoints anywhere else is possible. For this, set BREAKADDR in the config.py instead.
  • For fancy debugging, ucf uses uDdbg
  • Before fuzzing, run sudo ./setaflops.sh to initialize your system for fuzzing.

Run

  • ensure a target gdbserver is reachable, for example via ./startvm.sh
  • adapt config.py:
    • provide the target's gdbserver network address in the config to the probe wrapper
    • provide the target's target function to the probe wrapper and harness
    • make the harness put AFL's input to the desired memory location by adopting the place_input func config.py
    • add all EXITs
  • start ucf attach, it will (try to) connect to gdb.
  • make the target execute the target function (by using it inside the vm)
  • after the breakpoint was hit, run ucf fuzz. Make sure afl++ is in the PATH. (Use ./resumeafl.sh to resume using the same input folder)

Putting afl's input to the correct location must be coded invididually for most targets. However with modern binary analysis frameworks like IDA or Ghidra it's possible to find the desired location's address.

The following place_input method places at the data section of sk_buff in key_extract:

    # read input into param xyz here:
    rdx = uc.reg_read(UC_X86_REG_RDX)
    utils.map_page(uc, rdx) # ensure sk_buf is mapped
    bufferPtr = struct.unpack("<Q",uc.mem_read(rdx + 0xd8, 8))[0]
    utils.map_page(uc, bufferPtr) # ensure the buffer is mapped
    uc.mem_write(rdx, input) # insert afl input
    uc.mem_write(rdx + 0xc4, b"\xdc\x05") # fix tail

QEMUing the Kernel

A few general pointers. When using ./startvm.sh, the VM can be debugged via gdb. Use

$gdb
>file ./linux/vmlinux
>target remote :1234

This dynamic method makes it rather easy to find out breakpoints and that can then be fed to config.py. On top, startvm.sh will forward port 22 (ssh) to 8022 - you can use it to ssh into the VM. This makes it easier to interact with it.

Debugging

You can step through the code, starting at the breakpoint, with any given input. The fancy debugging makes use of uDdbg. To do so, run ucf emu -d $inputfile. Possible inputs to the harness (the thing wrapping afl-unicorn) that help debugging:

-d flag loads the target inside the unicorn debugger (uDdbg) -t flag enables the afl-unicorn tracer. It prints every emulated instruction, as well as displays memory accesses.

Gotchas

A few things to consider.

FS_BASE and GS_BASE

Unicorn did not offer a way to directly set model specific registers directly. The forked unicornafl version of AFL++ finally supports it. Most ugly code of earlier versions was scrapped.

Improve Fuzzing Speed

Right now, the Unicorefuzz ucf attach harness might need to be manually restarted after an amount of pages has been allocated. Allocated pages should propagate back to the forkserver parent automatically but might still get reloaded from disk for each iteration.

IO/Printthings

It's generally a good idea to nop out kprintf or kernel printing functionality if possible, when the program is loaded into the emulator.

Troubleshooting

If you got trouble running unicorefuzz, follow these rulse, worst case feel free to reach out to us, for example to @domenuk on twitter. For some notes on debugging and developing ucf and afl-unicorn further, read DEVELOPMENT.md

Just won't start

Run the harness without afl (ucf emu -t ./sometestcase). Make sure you are not in a virtualenv or in the correct one. If this works but it still crashes in AFL, set AFL_DEBUG_CHILD_OUTPUT=1 to see some harness output while fuzzing.

All testcases time out

Make sure ucf attach is running, in the same folder, and breakpoint has been triggered.

Owner
Security in Telecommunications
The Computer Security Group at Berlin University of Technology
Security in Telecommunications
Deploy optimized transformer based models on Nvidia Triton server

Deploy optimized transformer based models on Nvidia Triton server

Lefebvre Sarrut Services 1.2k Jan 05, 2023
Combine Tacotron2 and Hifi GAN to generate speech from text

EndToEndTextToSpeech Combine Tacotron2 and Hifi GAN to generate speech from text Download weights Hifi GAN - hifi_gan/checkpoint/ : pretrain 2.5M ste

Phạm Quốc Huy 1 Dec 18, 2021
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
Deep Federated Learning for Autonomous Driving

FADNet: Deep Federated Learning for Autonomous Driving Abstract Autonomous driving is an active research topic in both academia and industry. However,

AIOZ AI 12 Dec 01, 2022
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability

PCACE: A Statistical Approach to Ranking Neurons for CNN Interpretability PCACE is a new algorithm for ranking neurons in a CNN architecture in order

4 Jan 04, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
A simple and extensible library to create Bayesian Neural Network layers on PyTorch.

Blitz - Bayesian Layers in Torch Zoo BLiTZ is a simple and extensible library to create Bayesian Neural Network Layers (based on whats proposed in Wei

Pi Esposito 722 Jan 08, 2023
[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore

[AI6101] Introduction to AI & AI Ethics is a core course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6101 of Semester 1, AY2021-2022, starting from 08/2021. The instructors of

AccSrd 1 Sep 22, 2022
NL-Augmenter 🦎 → 🐍 A Collaborative Repository of Natural Language Transformations

NL-Augmenter 🦎 → 🐍 The NL-Augmenter is a collaborative effort intended to add transformations of datasets dealing with natural language. Transformat

684 Jan 09, 2023
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
【steal piano】GitHub偷情分析工具!

【steal piano】GitHub偷情分析工具! 你是否有这样的困扰,有一天你的仓库被很多人加了star,但是你却不知道这些人都是从哪来的? 别担心,GitHub偷情分析工具帮你轻松解决问题! 原理 GitHub偷情分析工具透过分析star的时间以及他们之间的follow关系,可以推测出每个st

黄巍 442 Dec 21, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for ONNX.

sam4onnx A very simple tool to rewrite parameters such as attributes and constants for OPs in ONNX models. Simple Attribute and Constant Modifier for

Katsuya Hyodo 6 May 15, 2022
Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV)

BayesOpt-LV Optimizing Value-at-Risk and Conditional Value-at-Risk of Black Box Functions with Lacing Values (LV) About This repository contains the s

1 Nov 11, 2021