The implementation of FOLD-R++ algorithm

Overview

FOLD-R-PP

The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task.

Installation

Prerequisites

FOLD-R++ is developed with only python3. Numpy is the only dependency:

python3 -m pip install numpy

Instruction

Data preparation

The FOLD-R++ algorithm takes tabular data as input, the first line for the tabular data should be the feature names of each column. The FOLD-R++ does not need encoding for training. It can deal with numeric, categorical, and even mixed type features (one column contains categorical and numeric values) directly. But, the numeric features should be specified before loading data, otherwise they would be dealt like categorical features (only literals with = and != would be generated).

There are many UCI datasets can be found in the data directory, and the code pieces of data preparation should be added to datasets.py.

For example, the UCI breast-w dataset can be loaded with the following code:

columns = ['clump_thickness', 'cell_size_uniformity', 'cell_shape_uniformity', 'marginal_adhesion',
'single_epi_cell_size', 'bare_nuclei', 'bland_chromatin', 'normal_nucleoli', 'mitoses']
nums = columns
data, num_idx, columns = load_data('data/breastw/breastw.csv', attrs=columns, label=['label'], numerics=nums, pos='benign')

columns lists all the features needed, nums lists all the numeric features, label implies the feature name of the label, pos indicates the positive value of the label.

Training

The FOLD-R++ algorithm generates an explainable model that is represented with an answer set program for classification tasks. Here's an training example for breast-w dataset:

X_train, Y_train = split_xy(data_train)
X_pos, X_neg = split_X_by_Y(X_train, Y_train)
rules1 = foldrpp(X_pos, X_neg, [])

We have got a rule set rules1 in a nested intermediate representation. Flatten and decode the nested rules to answer set program:

fr1 = flatten(rules1)
rule_set = decode_rules(fr1, attrs)
for r in rule_set:
    print(r)

The training process can be started with: python3 main.py

An answer set program that is compatible with s(CASP) is generated as below.

% breastw dataset (699, 10).
% the answer set program generated by foldr++:

label(X,'benign'):- bare_nuclei(X,'?').
label(X,'benign'):- bland_chromatin(X,N6), N6=<4.0,
		    clump_thickness(X,N0), N0=<6.0,  
                    bare_nuclei(X,N5), N5=<1.0, not ab7(X).   
label(X,'benign'):- cell_size_uniformity(X,N1), N1=<2.0,
		    not ab3(X), not ab5(X), not ab6(X).  
label(X,'benign'):- cell_size_uniformity(X,N1), N1=<4.0,
		    bare_nuclei(X,N5), N5=<3.0,
		    clump_thickness(X,N0), N0=<3.0, not ab8(X).  
ab2(X):- clump_thickness(X,N0), N0=<1.0.  
ab3(X):- bare_nuclei(X,N5), N5>5.0, not ab2(X).  
ab4(X):- cell_shape_uniformity(X,N2), N2=<1.0.  
ab5(X):- clump_thickness(X,N0), N0>7.0, not ab4(X).  
ab6(X):- bare_nuclei(X,N5), N5>4.0, single_epi_cell_size(X,N4), N4=<1.0.  
ab7(X):- marginal_adhesion(X,N3), N3>4.0.  
ab8(X):- marginal_adhesion(X,N3), N3>6.0.  

% foldr++ costs:  0:00:00.027710  post: 0:00:00.000127
% acc 0.95 p 0.96 r 0.9697 f1 0.9648 

Testing in Python

The testing data X_test, a set of testing data, can be predicted with the predict function in Python.

Y_test_hat = predict(rules1, X_test)

The classify function can also be used to classify a single data.

y_test_hat = classify(rules1, x_test)

Justification by using s(CASP)

Classification and justification can be conducted with s(CASP), but the data also need to be converted into predicate format. The decode_test_data function can be used for generating predicates for testing data.

data_pred = decode_test_data(data_test, attrs)
for p in data_pred:
    print(p)

Here is an example of generated testing data predicates along with the answer set program for acute dataset:

% acute dataset (120, 7) 
% the answer set program generated by foldr++:

ab2(X):- a5(X,'no'), a1(X,N0), N0>37.9.
label(X,'yes'):- not a4(X,'no'), not ab2(X).

% foldr++ costs:  0:00:00.001990  post: 0:00:00.000040
% acc 1.0 p 1.0 r 1.0 f1 1.0 

id(1).
a1(1,37.2).
a2(1,'no').
a3(1,'yes').
a4(1,'no').
a5(1,'no').
a6(1,'no').

id(2).
a1(2,38.1).
a2(2,'no').
a3(2,'yes').
a4(2,'yes').
a5(2,'no').
a6(2,'yes').

id(3).
a1(3,37.5).
a2(3,'no').
a3(3,'no').
a4(3,'yes').
a5(3,'yes').
a6(3,'yes').

s(CASP)

All the resources of s(CASP) can be found at https://gitlab.software.imdea.org/ciao-lang/sCASP.

Citation

@misc{wang2021foldr,
      title={FOLD-R++: A Toolset for Automated Inductive Learning of Default Theories from Mixed Data}, 
      author={Huaduo Wang and Gopal Gupta},
      year={2021},
      eprint={2110.07843},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" (RSS 2022)

Intro Official implementation of "Learning Forward Dynamics Model and Informed Trajectory Sampler for Safe Quadruped Navigation" Robotics:Science and

Yunho Kim 21 Dec 07, 2022
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
A custom DeepStack model that has been trained detecting ONLY the USPS logo

This repository provides a custom DeepStack model that has been trained detecting ONLY the USPS logo. This was created after I discovered that the Deepstack OpenLogo custom model I was using did not

Stephen Stratoti 9 Dec 27, 2022
This repository contains a set of codes to run (i.e., train, perform inference with, evaluate) a diarization method called EEND-vector-clustering.

EEND-vector clustering The EEND-vector clustering (End-to-End-Neural-Diarization-vector clustering) is a speaker diarization framework that integrates

45 Dec 26, 2022
a basic code repository for basic task in CV(classification,detection,segmentation)

basic_cv a basic code repository for basic task in CV(classification,detection,segmentation,tracking) classification generate dataset train predict de

1 Oct 15, 2021
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS).

UniNAS A highly modular PyTorch framework with a focus on Neural Architecture Search (NAS). under development (which happens mostly on our internal Gi

Cognitive Systems Research Group 19 Nov 23, 2022
Code for testing various M1 Chip benchmarks with TensorFlow.

M1, M1 Pro, M1 Max Machine Learning Speed Test Comparison This repo contains some sample code to benchmark the new M1 MacBooks (M1 Pro and M1 Max) aga

Daniel Bourke 348 Jan 04, 2023
code for "Self-supervised edge features for improved Graph Neural Network training",

Self-supervised edge features for improved Graph Neural Network training Data availability: Here is a link to the raw data for the organoids dataset.

Neal Ravindra 23 Dec 02, 2022
Pytorch implementation of Value Iteration Networks (NIPS 2016 best paper)

VIN: Value Iteration Networks A quick thank you A few others have released amazing related work which helped inspire and improve my own implementation

Kent Sommer 297 Dec 26, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
A basic duplicate image detection service using perceptual image hash functions and nearest neighbor search, implemented using faiss, fastapi, and imagehash

Duplicate Image Detection Getting Started Install dependencies pip install -r requirements.txt Run service python main.py Testing Test with pytest How

Matthew Podolak 21 Nov 11, 2022
Parasite: a tool allowing you to compress and decompress files, to reduce their size

🦠 Parasite 🦠 Parasite is a tool written in Python3 allowing you to "compress" any file, reducing its size. ⭐ Features ⭐ + Fast + Good optimization,

Billy 30 Nov 25, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021