The implementation of FOLD-R++ algorithm

Overview

FOLD-R-PP

The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task.

Installation

Prerequisites

FOLD-R++ is developed with only python3. Numpy is the only dependency:

python3 -m pip install numpy

Instruction

Data preparation

The FOLD-R++ algorithm takes tabular data as input, the first line for the tabular data should be the feature names of each column. The FOLD-R++ does not need encoding for training. It can deal with numeric, categorical, and even mixed type features (one column contains categorical and numeric values) directly. But, the numeric features should be specified before loading data, otherwise they would be dealt like categorical features (only literals with = and != would be generated).

There are many UCI datasets can be found in the data directory, and the code pieces of data preparation should be added to datasets.py.

For example, the UCI breast-w dataset can be loaded with the following code:

columns = ['clump_thickness', 'cell_size_uniformity', 'cell_shape_uniformity', 'marginal_adhesion',
'single_epi_cell_size', 'bare_nuclei', 'bland_chromatin', 'normal_nucleoli', 'mitoses']
nums = columns
data, num_idx, columns = load_data('data/breastw/breastw.csv', attrs=columns, label=['label'], numerics=nums, pos='benign')

columns lists all the features needed, nums lists all the numeric features, label implies the feature name of the label, pos indicates the positive value of the label.

Training

The FOLD-R++ algorithm generates an explainable model that is represented with an answer set program for classification tasks. Here's an training example for breast-w dataset:

X_train, Y_train = split_xy(data_train)
X_pos, X_neg = split_X_by_Y(X_train, Y_train)
rules1 = foldrpp(X_pos, X_neg, [])

We have got a rule set rules1 in a nested intermediate representation. Flatten and decode the nested rules to answer set program:

fr1 = flatten(rules1)
rule_set = decode_rules(fr1, attrs)
for r in rule_set:
    print(r)

The training process can be started with: python3 main.py

An answer set program that is compatible with s(CASP) is generated as below.

% breastw dataset (699, 10).
% the answer set program generated by foldr++:

label(X,'benign'):- bare_nuclei(X,'?').
label(X,'benign'):- bland_chromatin(X,N6), N6=<4.0,
		    clump_thickness(X,N0), N0=<6.0,  
                    bare_nuclei(X,N5), N5=<1.0, not ab7(X).   
label(X,'benign'):- cell_size_uniformity(X,N1), N1=<2.0,
		    not ab3(X), not ab5(X), not ab6(X).  
label(X,'benign'):- cell_size_uniformity(X,N1), N1=<4.0,
		    bare_nuclei(X,N5), N5=<3.0,
		    clump_thickness(X,N0), N0=<3.0, not ab8(X).  
ab2(X):- clump_thickness(X,N0), N0=<1.0.  
ab3(X):- bare_nuclei(X,N5), N5>5.0, not ab2(X).  
ab4(X):- cell_shape_uniformity(X,N2), N2=<1.0.  
ab5(X):- clump_thickness(X,N0), N0>7.0, not ab4(X).  
ab6(X):- bare_nuclei(X,N5), N5>4.0, single_epi_cell_size(X,N4), N4=<1.0.  
ab7(X):- marginal_adhesion(X,N3), N3>4.0.  
ab8(X):- marginal_adhesion(X,N3), N3>6.0.  

% foldr++ costs:  0:00:00.027710  post: 0:00:00.000127
% acc 0.95 p 0.96 r 0.9697 f1 0.9648 

Testing in Python

The testing data X_test, a set of testing data, can be predicted with the predict function in Python.

Y_test_hat = predict(rules1, X_test)

The classify function can also be used to classify a single data.

y_test_hat = classify(rules1, x_test)

Justification by using s(CASP)

Classification and justification can be conducted with s(CASP), but the data also need to be converted into predicate format. The decode_test_data function can be used for generating predicates for testing data.

data_pred = decode_test_data(data_test, attrs)
for p in data_pred:
    print(p)

Here is an example of generated testing data predicates along with the answer set program for acute dataset:

% acute dataset (120, 7) 
% the answer set program generated by foldr++:

ab2(X):- a5(X,'no'), a1(X,N0), N0>37.9.
label(X,'yes'):- not a4(X,'no'), not ab2(X).

% foldr++ costs:  0:00:00.001990  post: 0:00:00.000040
% acc 1.0 p 1.0 r 1.0 f1 1.0 

id(1).
a1(1,37.2).
a2(1,'no').
a3(1,'yes').
a4(1,'no').
a5(1,'no').
a6(1,'no').

id(2).
a1(2,38.1).
a2(2,'no').
a3(2,'yes').
a4(2,'yes').
a5(2,'no').
a6(2,'yes').

id(3).
a1(3,37.5).
a2(3,'no').
a3(3,'no').
a4(3,'yes').
a5(3,'yes').
a6(3,'yes').

s(CASP)

All the resources of s(CASP) can be found at https://gitlab.software.imdea.org/ciao-lang/sCASP.

Citation

@misc{wang2021foldr,
      title={FOLD-R++: A Toolset for Automated Inductive Learning of Default Theories from Mixed Data}, 
      author={Huaduo Wang and Gopal Gupta},
      year={2021},
      eprint={2110.07843},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
Official code for On Path Integration of Grid Cells: Group Representation and Isotropic Scaling (NeurIPS 2021)

On Path Integration of Grid Cells: Group Representation and Isotropic Scaling This repo contains the official implementation for the paper On Path Int

Ruiqi Gao 39 Nov 10, 2022
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
Face Alignment using python

Face Alignment Face Alignment using python Input Image Aligned Face Aligned Face Aligned Face Input Image Aligned Face Input Image Aligned Face Instal

Sajjad Aemmi 28 Nov 23, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System

Inverse Optimal Control Adapted to the Noise Characteristics of the Human Sensorimotor System This repository contains code for the paper Schultheis,

2 Oct 28, 2022
Official implementation for "Image Quality Assessment using Contrastive Learning"

Image Quality Assessment using Contrastive Learning Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik This is the offi

Pavan Chennagiri 67 Dec 30, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
PyTorch implementation of the Transformer in Post-LN (Post-LayerNorm) and Pre-LN (Pre-LayerNorm).

Transformer-PyTorch A PyTorch implementation of the Transformer from the paper Attention is All You Need in both Post-LN (Post-LayerNorm) and Pre-LN (

Jared Wang 22 Feb 27, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023