A single model that parses Universal Dependencies across 75 languages.

Overview

UDify

MIT License

UDify is a single model that parses Universal Dependencies (UPOS, UFeats, Lemmas, Deps) jointly, accepting any of 75 supported languages as input (trained on UD v2.3 with 124 treebanks). This repository accompanies the paper, "75 Languages, 1 Model: Parsing Universal Dependencies Universally," providing tools to train a multilingual model capable of parsing any Universal Dependencies treebank with high accuracy. This project also supports training and evaluating for the SIGMORPHON 2019 Shared Task #2, which achieved 1st place in morphology tagging (paper can be found here).

Integration with SpaCy is supported by Camphr.

UDify Model Architecture

The project is built using AllenNLP and PyTorch.

Getting Started

Install the Python packages in requirements.txt. UDify depends on AllenNLP and PyTorch. For Windows OS, use WSL. Optionally, install TensorFlow to get access to TensorBoard to get a rich visualization of model performance on each UD task.

pip install -r ./requirements.txt

Download the UD corpus by running the script

bash ./scripts/download_ud_data.sh

or alternatively download the data from universaldependencies.org and extract into data/ud-treebanks-v2.3/, then run scripts/concat_ud_data.sh to generate the multilingual UD dataset.

Training the Model

Before training, make sure the dataset is downloaded and extracted into the data directory and the multilingual dataset is generated with scripts/concat_ud_data.sh. To train the multilingual model (fine-tune UD on BERT), run the command

python train.py --config config/ud/multilingual/udify_bert_finetune_multilingual.json --name multilingual

which will begin loading the dataset and model before training the network. The model metrics, vocab, and weights will be saved under logs/multilingual. Note that this process is highly memory intensive and requires 16+ GB of RAM and 12+ GB of GPU memory (requirements are half if fp16 is enabled in AllenNLP, but this requires custom changes to the library). The training may take 20 or more days to complete all 80 epochs depending on the type of your GPU.

Training on Other Datasets

An example config is given for fine-tuning on just English EWT. Just run:

python train.py --config config/ud/en/udify_bert_finetune_en_ewt.json --name en_ewt --dataset_dir data/ud-treebanks-v2.3/

To run your own dataset, copy config/ud/multilingual/udify_bert_finetune_multilingual.json and modify the following json parameters:

  • train_data_path, validation_data_path, and test_data_path to the paths of the dataset conllu files. These can be optionally null.
  • directory_path to data/vocab/ /vocabulary .
  • warmup_steps and start_step to be equal to the number of steps in the first epoch. A good initial value is in the range 100-1000. Alternatively, run the training script first to see the number of steps to the right of the progress bar.
  • If using just one treebank, optionally add xpos to the tasks list.

Viewing Model Performance

One can view how well the models are performing by running TensorBoard

tensorboard --logdir logs

This should show the currently trained model as well as any other previously trained models. The model will be stored in a folder specified by the --name parameter as well as a date stamp, e.g., logs/multilingual/2019.07.03_11.08.51.

Pretrained Models

Pretrained models can be found here. This can be used for predicting conllu annotations or for fine-tuning. The link contains the following:

  • udify-model.tar.gz - The full UDify model archive that can be used for prediction with predict.py. Note that this model has been trained for extra epochs, and may differ slightly from the model shown in the original research paper.
  • udify-bert.tar.gz - The extracted BERT weights from the UDify model, in huggingface transformers (pytorch-pretrained-bert) format.

Predicting Universal Dependencies from a Trained Model

To predict UD annotations, one can supply the path to the trained model and an input conllu-formatted file:

python predict.py <archive> <input.conllu> <output.conllu> [--eval_file results.json]

For instance, predicting the dev set of English EWT with the trained model saved under logs/model.tar.gz and UD treebanks at data/ud-treebanks-v2.3 can be done with

python predict.py logs/model.tar.gz  data/ud-treebanks-v2.3/UD_English-EWT/en_ewt-ud-dev.conllu logs/pred.conllu --eval_file logs/pred.json

and will save the output predictions to logs/pred.conllu and evaluation to logs/pred.json.

Configuration Options

  1. One can specify the type of device to run on. For a single GPU, use the flag --device 0, or --device -1 for CPU.
  2. To skip waiting for the dataset to be fully loaded into memory, use the flag --lazy. Note that the dataset won't be shuffled.
  3. Resume an existing training run with --resume .
  4. Specify a config file with --config .

SIGMORPHON 2019 Shared Task

A modification to the basic UDify model is available for parsing morphology in the SIGMORPHON 2019 Shared Task #2. The following paper describes the model in more detail: "Cross-Lingual Lemmatization and Morphology Tagging with Two-Stage Multilingual BERT Fine-Tuning".

Training is similar to UD, just run download_sigmorphon_data.sh and then use the configuration file under config/sigmorphon/multilingual, e.g.,

python train.py --config config/sigmorphon/multilingual/udify_bert_sigmorphon_multilingual.json --name sigmorphon

FAQ

  1. When fine-tuning, my scores/metrics show poor performance.

It should take about 10 epochs to start seeing good scores coming from all the metrics, and 80 epochs to be competitive with UDPipe Future.

One caveat is that if you use a subset of treebanks for fine-tuning instead of all 124 UD v2.3 treebanks, you must modify the configuration file. Make sure to tune the learning rate scheduler to the number of training steps. Copy the udify_bert_finetune_multilingual.json config and modify the "warmup_steps" and "start_step" values. A good initial choice would be to set both to be equal to the number of training batches of one epoch (run the training script first to see the batches remaining, to the right of the progress bar).

Have a question not listed here? Open a GitHub Issue.

Citing This Research

If you use UDify for your research, please cite this work as:

@inproceedings{kondratyuk-straka-2019-75,
    title = {75 Languages, 1 Model: Parsing Universal Dependencies Universally},
    author = {Kondratyuk, Dan and Straka, Milan},
    booktitle = {Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)},
    year = {2019},
    address = {Hong Kong, China},
    publisher = {Association for Computational Linguistics},
    url = {https://www.aclweb.org/anthology/D19-1279},
    pages = {2779--2795}
}
Owner
Dan Kondratyuk
Machine Learning, NLP, and Computer Vision. I love a fresh challenge—be it a math problem, a physics puzzle, or programming quandary.
Dan Kondratyuk
Get list of common stop words in various languages in Python

Python Stop Words Table of contents Overview Available languages Installation Basic usage Python compatibility Overview Get list of common stop words

Alireza Savand 142 Dec 21, 2022
Athena is an open-source implementation of end-to-end speech processing engine.

Athena is an open-source implementation of end-to-end speech processing engine. Our vision is to empower both industrial application and academic research on end-to-end models for speech processing.

Ke Technologies 34 Sep 08, 2022
A library for end-to-end learning of embedding index and retrieval model

Poeem Poeem is a library for efficient approximate nearest neighbor (ANN) search, which has been widely adopted in industrial recommendation, advertis

54 Dec 21, 2022
Code for text augmentation method leveraging large-scale language models

HyperMix Code for our paper GPT3Mix and conducting classification experiments using GPT-3 prompt-based data augmentation. Getting Started Installing P

NAVER AI 47 Dec 20, 2022
(ACL-IJCNLP 2021) Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models.

BERT Convolutions Code for the paper Convolutions and Self-Attention: Re-interpreting Relative Positions in Pre-trained Language Models. Contains expe

mlpc-ucsd 21 Jul 18, 2022
Precision Medicine Knowledge Graph (PrimeKG)

PrimeKG Website | bioRxiv Paper | Harvard Dataverse Precision Medicine Knowledge Graph (PrimeKG) presents a holistic view of diseases. PrimeKG integra

Machine Learning for Medicine and Science @ Harvard 103 Dec 10, 2022
A flask application to predict the speech emotion of any .wav file.

This is a speech emotion recognition app. It will allow you to train a modular MLP model with the RAVDESS dataset, and then use that model with a flask application to predict the speech emotion of an

Aryan Vijaywargia 2 Dec 15, 2021
Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention

Nystromformer: A Nystrom-based Algorithm for Approximating Self-Attention April 6, 2021 We extended segment-means to compute landmarks without requiri

Zhanpeng Zeng 322 Jan 01, 2023
Treemap visualisation of Maya scene files

Ever wondered which nodes are responsible for that 600 mb+ Maya scene file? Features Fast, resizable UI Parsing at 50 mb/sec Dependency-free, single-f

Marcus Ottosson 76 Nov 12, 2022
CorNet Correlation Networks for Extreme Multi-label Text Classification

CorNet Correlation Networks for Extreme Multi-label Text Classification Prerequisites python==3.6.3 pytorch==1.2.0 torchgpipe==0.0.5 click==7.0 ruamel

Guangxu Xun 38 Dec 31, 2022
Converts text into a PDF of handwritten notes

Text To Handwritten Notes Converts text into a PDF of handwritten notes Explore the docs » · Report Bug · Request Feature · Steps: $ git clone https:/

UVSinghK 63 Oct 09, 2022
A simple Streamlit App to classify swahili news into different categories.

Swahili News Classifier Streamlit App A simple app to classify swahili news into different categories. Installation Install all streamlit requirements

Davis David 4 May 01, 2022
apple's universal binaries BUT MUCH WORSE (PRACTICAL SHITPOST) (NOT PRODUCTION READY)

hyperuniversality investment opportunity: what if we could run multiple architectures in a single file, again apple universal binaries, but worse how

luna 2 Oct 19, 2021
Pytorch NLP library based on FastAI

Quick NLP Quick NLP is a deep learning nlp library inspired by the fast.ai library It follows the same api as fastai and extends it allowing for quick

Agis pof 283 Nov 21, 2022
File-based TF-IDF: Calculates keywords in a document, using a word corpus.

File-based TF-IDF Calculates keywords in a document, using a word corpus. Why? Because I found myself with hundreds of plain text files, with no way t

Jakob Lindskog 1 Feb 11, 2022
Codes for coreference-aware machine reading comprehension

Data and code for the paper "Tracing Origins: Coreference-aware Machine Reading Comprehension" at ACL2022. Dataset There are three folders for our thr

11 Sep 29, 2022
Outreachy TFX custom component project

Schema Curation Custom Component Outreachy TFX custom component project This repo contains the code for Schema Curation Custom Component made as a par

Robert Crowe 5 Jul 16, 2021
Use Tensorflow2.7.0 Build OpenAI'GPT-2

TF2_GPT-2 Use Tensorflow2.7.0 Build OpenAI'GPT-2 使用最新tensorflow2.7.0构建openai官方的GPT-2 NLP模型 优点 使用无监督技术 拥有大量词汇量 可实现续写(堪比“xx梦续写”) 实现对话后续将应用于FloatTech的Bot

Watermelon 9 Sep 13, 2022
translate using your voice

speech-to-text-translator Usage translate using your voice description this project makes translating a word easy, all you have to do is speak and...

1 Oct 18, 2021
Leon is an open-source personal assistant who can live on your server.

Leon Your open-source personal assistant. Website :: Documentation :: Roadmap :: Contributing :: Story 👋 Introduction Leon is an open-source personal

Leon AI 11.7k Dec 30, 2022