Official implementation for "Image Quality Assessment using Contrastive Learning"

Overview

Image Quality Assessment using Contrastive Learning

Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik

This is the official repository of the paper Image Quality Assessment using Contrastive Learning

Usage

The code has been tested on Linux systems with python 3.6. Please refer to requirements.txt for installing dependent packages.

Running CONTRIQUE

In order to obtain quality score using CONTRIQUE model, checkpoint needs to be downloaded. The following command can be used to download the checkpoint.

wget -L https://utexas.box.com/shared/static/rhpa8nkcfzpvdguo97n2d5dbn4qb03z8.tar -O models/CONTRIQUE_checkpoint25.tar -q --show-progress

Alternatively, the checkpoint can also be downloaded using this link.

Obtaining Quality Scores

We provide trained regressor models in models directory which can be used for predicting image quality using features obtained from CONTRIQUE model. For demonstration purposes, some sample images provided in the sample_images folder.

For blind quality prediction, the following commands can be used.

python3 demo_score.py --im_path sample_images/60.bmp --model_path models/CONTRIQUE_checkpoint25.tar --linear_regressor_path models/CLIVE.save
python3 demo_score.py --im_path sample_images/img66.bmp --model_path models/CONTRIQUE_checkpoint25.tar --linear_regressor_path models/LIVE.save

For Full-reference quality assessment, the folllowing command can be employed.

python3 demos_score_FR.py --ref_path sample_images/churchandcapitol.bmp --dist_path sample_images/img66.bmp --model_path models/CONTRIQUE_checkpoint25.tar --linear_regressor_path models/CSIQ_FR.save

Training CONTRIQUE

Download Training Data

Create a directory mkdir training_data to store images used for training CONTRIQUE.

  1. KADIS-700k : Download KADIS-700k dataset and execute the supllied codes to generate synthetically distorted images. Store this data in the training_data/kadis700k directory.
  2. AVA : Download AVA dataset and store in the training_data/UGC_images/AVA_Dataset directory.
  3. COCO : COCO dataset contains 330k images spread across multiple competitions. We used 4 folders training_data/UGC_images/test2015, training_data/UGC_images/train2017, training_data/UGC_images/val2017, training_data/UGC_images/unlabeled2017 for training.
  4. CERTH-Blur : Blur dataset images are stored in the training_data/UGC_images/blur_image directory.
  5. VOC : VOC images are stored in the training_data/UGC_images/VOC2012 directory.

Training Model

Download csv files containing path to images and corresponding distortion classes.

wget -L https://utexas.box.com/shared/static/124n9sfb27chgt59o8mpxl7tomgvn2lo.csv -O csv_files/file_names_ugc.csv -q --show-progress
wget -L https://utexas.box.com/shared/static/jh5cmu63347auyza37773as5o9zxctby.csv -O csv_files/file_names_syn.csv -q --show-progress

The above files can also be downloaded manually using these links link1, link2

For training with a single GPU the following command can be used

python3 train.py --batch_size 256 --lr 0.6 --epochs 25

Training with multiple GPUs using Distributed training (Recommended)

Run the following commands on different terminals concurrently

CUDA_VISIBLE_DEVICES=0 python3 train.py --nodes 4 --nr 0 --batch_size 64 --lr 0.6 --epochs 25
CUDA_VISIBLE_DEVICES=1 python3 train.py --nodes 4 --nr 1 --batch_size 64 --lr 0.6 --epochs 25
CUDA_VISIBLE_DEVICES=2 python3 train.py --nodes 4 --nr 2 --batch_size 64 --lr 0.6 --epochs 25
CUDA_VISIBLE_DEVICES=3 python3 train.py --nodes 4 --nr 3 --batch_size 64 --lr 0.6 --epochs 25

Note that in distributed training, batch_size value will be the number of images to be loaded on each GPU. During CONTRIQUE training equal number of images will be loaded from both synthetic and authentic distortions. Thus in the above example code, 128 images will be loaded on each GPU.

Training Linear Regressor

After CONTRIQUE model training is complete, a linear regressor is trained using CONTRIQUE features and corresponding ground truth quality scores using the following command.

python3 train_regressor.py --feat_path feat.npy --ground_truth_path scores.npy --alpha 0.1

Contact

Please contact Pavan ([email protected]) if you have any questions, suggestions or corrections to the above implementation.

Citation

@article{madhusudana2021st,
  title={Image Quality Assessment using Contrastive Learning},
  author={Madhusudana, Pavan C and Birkbeck, Neil and Wang, Yilin and Adsumilli, Balu and Bovik, Alan C},
  journal={arXiv:2110.13266},
  year={2021}
}
Owner
Pavan Chennagiri
PhD Student
Pavan Chennagiri
"Segmenter: Transformer for Semantic Segmentation" reproduced via mmsegmentation

Segmenter-based-on-OpenMMLab "Segmenter: Transformer for Semantic Segmentation, arxiv 2105.05633." reproduced via mmsegmentation. We reproduce Segment

EricKani 22 Feb 24, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
Understanding and Overcoming the Challenges of Efficient Transformer Quantization

Transformer Quantization This repository contains the implementation and experiments for the paper presented in Yelysei Bondarenko1, Markus Nagel1, Ti

83 Dec 30, 2022
This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes.

Rotate-Yolov5 This repository is based on Ultralytics/yolov5, with adjustments to enable rotate prediction boxes. Section I. Description The codes are

xinzelee 90 Dec 13, 2022
Tightness-aware Evaluation Protocol for Scene Text Detection

TIoU-metric Release on 27/03/2019. This repository is built on the ICDAR 2015 evaluation code. If you propose a better metric and require further eval

Yuliang Liu 206 Nov 18, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Anomaly detection analysis and labeling tool, specifically for multiple time series (one time series per category)

taganomaly Anomaly detection labeling tool, specifically for multiple time series (one time series per category). Taganomaly is a tool for creating la

Microsoft 272 Dec 17, 2022
MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images

MetaAvatar: Learning Animatable Clothed Human Models from Few Depth Images This repository contains the implementation of our paper MetaAvatar: Learni

sfwang 96 Dec 13, 2022
Multi-Task Learning as a Bargaining Game

Nash-MTL Official implementation of "Multi-Task Learning as a Bargaining Game". Setup environment conda create -n nashmtl python=3.9.7 conda activate

Aviv Navon 87 Dec 26, 2022
Interactive Image Segmentation via Backpropagating Refinement Scheme

Won-Dong Jang and Chang-Su Kim, Interactive Image Segmentation via Backpropagating Refinement Scheme, CVPR 2019

Won-Dong Jang 85 Sep 15, 2022
Convolutional 2D Knowledge Graph Embeddings resources

ConvE Convolutional 2D Knowledge Graph Embeddings resources. Paper: Convolutional 2D Knowledge Graph Embeddings Used in the paper, but do not use thes

Tim Dettmers 586 Dec 24, 2022
Count the MACs / FLOPs of your PyTorch model.

THOP: PyTorch-OpCounter How to install pip install thop (now continously intergrated on Github actions) OR pip install --upgrade git+https://github.co

Ligeng Zhu 3.9k Dec 29, 2022
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your

Hao Tang 424 Dec 02, 2022
ECAENet (TensorFlow and Keras)

ECAENet: EfficientNet with Efficient Channel Attention for Plant Species Recognition (SCI:Q3) (Journal of Intelligent & Fuzzy Systems)

4 Dec 22, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022