Official implementation for "Image Quality Assessment using Contrastive Learning"

Overview

Image Quality Assessment using Contrastive Learning

Pavan C. Madhusudana, Neil Birkbeck, Yilin Wang, Balu Adsumilli and Alan C. Bovik

This is the official repository of the paper Image Quality Assessment using Contrastive Learning

Usage

The code has been tested on Linux systems with python 3.6. Please refer to requirements.txt for installing dependent packages.

Running CONTRIQUE

In order to obtain quality score using CONTRIQUE model, checkpoint needs to be downloaded. The following command can be used to download the checkpoint.

wget -L https://utexas.box.com/shared/static/rhpa8nkcfzpvdguo97n2d5dbn4qb03z8.tar -O models/CONTRIQUE_checkpoint25.tar -q --show-progress

Alternatively, the checkpoint can also be downloaded using this link.

Obtaining Quality Scores

We provide trained regressor models in models directory which can be used for predicting image quality using features obtained from CONTRIQUE model. For demonstration purposes, some sample images provided in the sample_images folder.

For blind quality prediction, the following commands can be used.

python3 demo_score.py --im_path sample_images/60.bmp --model_path models/CONTRIQUE_checkpoint25.tar --linear_regressor_path models/CLIVE.save
python3 demo_score.py --im_path sample_images/img66.bmp --model_path models/CONTRIQUE_checkpoint25.tar --linear_regressor_path models/LIVE.save

For Full-reference quality assessment, the folllowing command can be employed.

python3 demos_score_FR.py --ref_path sample_images/churchandcapitol.bmp --dist_path sample_images/img66.bmp --model_path models/CONTRIQUE_checkpoint25.tar --linear_regressor_path models/CSIQ_FR.save

Training CONTRIQUE

Download Training Data

Create a directory mkdir training_data to store images used for training CONTRIQUE.

  1. KADIS-700k : Download KADIS-700k dataset and execute the supllied codes to generate synthetically distorted images. Store this data in the training_data/kadis700k directory.
  2. AVA : Download AVA dataset and store in the training_data/UGC_images/AVA_Dataset directory.
  3. COCO : COCO dataset contains 330k images spread across multiple competitions. We used 4 folders training_data/UGC_images/test2015, training_data/UGC_images/train2017, training_data/UGC_images/val2017, training_data/UGC_images/unlabeled2017 for training.
  4. CERTH-Blur : Blur dataset images are stored in the training_data/UGC_images/blur_image directory.
  5. VOC : VOC images are stored in the training_data/UGC_images/VOC2012 directory.

Training Model

Download csv files containing path to images and corresponding distortion classes.

wget -L https://utexas.box.com/shared/static/124n9sfb27chgt59o8mpxl7tomgvn2lo.csv -O csv_files/file_names_ugc.csv -q --show-progress
wget -L https://utexas.box.com/shared/static/jh5cmu63347auyza37773as5o9zxctby.csv -O csv_files/file_names_syn.csv -q --show-progress

The above files can also be downloaded manually using these links link1, link2

For training with a single GPU the following command can be used

python3 train.py --batch_size 256 --lr 0.6 --epochs 25

Training with multiple GPUs using Distributed training (Recommended)

Run the following commands on different terminals concurrently

CUDA_VISIBLE_DEVICES=0 python3 train.py --nodes 4 --nr 0 --batch_size 64 --lr 0.6 --epochs 25
CUDA_VISIBLE_DEVICES=1 python3 train.py --nodes 4 --nr 1 --batch_size 64 --lr 0.6 --epochs 25
CUDA_VISIBLE_DEVICES=2 python3 train.py --nodes 4 --nr 2 --batch_size 64 --lr 0.6 --epochs 25
CUDA_VISIBLE_DEVICES=3 python3 train.py --nodes 4 --nr 3 --batch_size 64 --lr 0.6 --epochs 25

Note that in distributed training, batch_size value will be the number of images to be loaded on each GPU. During CONTRIQUE training equal number of images will be loaded from both synthetic and authentic distortions. Thus in the above example code, 128 images will be loaded on each GPU.

Training Linear Regressor

After CONTRIQUE model training is complete, a linear regressor is trained using CONTRIQUE features and corresponding ground truth quality scores using the following command.

python3 train_regressor.py --feat_path feat.npy --ground_truth_path scores.npy --alpha 0.1

Contact

Please contact Pavan ([email protected]) if you have any questions, suggestions or corrections to the above implementation.

Citation

@article{madhusudana2021st,
  title={Image Quality Assessment using Contrastive Learning},
  author={Madhusudana, Pavan C and Birkbeck, Neil and Wang, Yilin and Adsumilli, Balu and Bovik, Alan C},
  journal={arXiv:2110.13266},
  year={2021}
}
Owner
Pavan Chennagiri
PhD Student
Pavan Chennagiri
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
DNA-RECON { Automatic Web Reconnaissance Tool }

ABOUT TOOL : DNA-RECON is an automatic web reconnaissance tool written in python. This tool made for reconnaissance and information gathering with an

NIKUNJ BHATT 25 Aug 11, 2021
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
Submission to Twitter's algorithmic bias bounty challenge

Twitter Ethics Challenge: Pixel Perfect Submission to Twitter's algorithmic bias bounty challenge, by Travis Hoppe (@metasemantic). Abstract We build

Travis Hoppe 4 Aug 19, 2022
Sample Prior Guided Robust Model Learning to Suppress Noisy Labels

PGDF This repo is the official implementation of our paper "Sample Prior Guided Robust Model Learning to Suppress Noisy Labels ". Citation If you use

CVSM Group - email: <a href=[email protected]"> 22 Dec 23, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intel ISL (Intel Intelligent Systems Lab) 1.3k Dec 28, 2022
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Learning to Learn Graph Topologies This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies. Requirem

Stacy X PU 16 Dec 09, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
ONNX Command-Line Toolbox

ONNX Command Line Toolbox Aims to improve your experience of investigating ONNX models. Use it like onnx infershape /path/to/model.onnx. (See the usag

黎明灰烬 (王振华 Zhenhua WANG) 23 Nov 13, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU A Tensorflow Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/abs/211

Fuhang 5 Jan 18, 2022
Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning"

CAPGNN Source code and dataset of the paper "Contrastive Adaptive Propagation Graph Neural Networks forEfficient Graph Learning" Paper URL: https://ar

1 Mar 12, 2022
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 26, 2022
Tracking Pipeline helps you to solve the tracking problem more easily

Tracking_Pipeline Tracking_Pipeline helps you to solve the tracking problem more easily I integrate detection algorithms like: Yolov5, Yolov4, YoloX,

VNOpenAI 32 Dec 21, 2022
Code for "ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on", accepted at WACV 2021 Generation of Human Behavior Workshop.

ShineOn: Illuminating Design Choices for Practical Video-based Virtual Clothing Try-on [ Paper ] [ Project Page ] This repository contains the code fo

Andrew Jong 97 Dec 13, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library.

SymEngine Python Wrappers Python wrappers to the C++ library SymEngine, a fast C++ symbolic manipulation library. Installation Pip See License section

136 Dec 28, 2022