Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Overview

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

This repository contains the source code for an end-to-end open-domain question answering system. The system is made up of two components: a retriever model and a reading comprehension (question answering) model. We provide the code for these two models in addition to demo code based on Streamlit. A video of the demo can be viewed here.

Installation

Our system uses PubMedBERT, a neural language model that is pretrained on PubMed abstracts for the retriever. Download the PyTorch version of PubMedBert here. For reading comprehension, we utilize BioBERT fine-tuned on SQuAD V2 . The model can be found here.

Datasets

We provide the COVID-QA dataset under the data directory. This is used for both the retriever and reading models. The train/dev/test files for the retriever are named dense_*.txt and those for reading comprehension are named qa_*.json.

The CORD-19 dataset is available for download here. Our system requires download of both the document_parses and metadata files for complete article information. For our system we use the 2021-02-15 download but any other download can also work. This must be combined into a jsonl file where each line contains a json object with:

  • id: article PMC id
  • title: article title
  • text: article text
  • index: text's index in the corpus (also the same as line number in the jsonl file)
  • date: article date
  • journal: journal published
  • authors: author list

We split each article into multiple json entries based on paragraph text cutoff in the document_parses file. Paragraphs that are longer than 200 tokens are split futher. This can be done with splitCORD.py where

* metdata-file: the metadata downloaded for CORD
* pmc-path: path to the PMC articles downloaded for CORD
* out-path: output jsonl file

Dense Retrieval Model

Once we have our model (PubMedBERT), we can start training. More specifically during training, we use positive and negative paragraphs, positive being paragraphs that contain the answer to a question, and negative ones not. We train on the COVID-QA dataset (see the Datasets section for more information on COVID-QA). We have a unified encoder for both questions and text paragraphs that learns to encode questions and associated texts into similar vectors. Afterwards, we use the model to encode the CORD-19 corpus.

Training

scripts/train.sh can be used to train our dense retrieval model.

CUDA_VISIBLE_DEVICES=0 python ../train_retrieval.py \
    --do_train \
    --prefix strong_dpr_baseline_b150 \
    --predict_batch_size 2000 \
    --model_name microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext \
    --train_batch_size 75 \
    --learning_rate 2e-5 \
    --fp16 \
    --train_file ../data/dense_train.txt \
    --predict_file ../data/dense_dev.txt \
    --seed 16 \
    --eval_period 300 \
    --max_c_len 300 \
    --max_q_len 30 \
    --warmup_ratio 0.1 \
    --num_train_epochs 20 \
    --dense_only \
    --output_dir /path/to/model/output \

Here are things to keep in mind:

1. The output_dir flag is where the model will be saved.
2. You can define the init_checkpoint flag to continue fine-tuning on another dataset.

The Dense retrieval model is then combined with BM25 for reranking (see paper for details).

Corpus

Next, go to scripts/encode_covid_corpus.sh for the command to encode our corpus.

CUDA_VISIBLE_DEVICES=0 python ../encode_corpus.py \
    --do_predict \
    --predict_batch_size 1000 \
    --model_name microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext \
    --fp16 \
    --predict_file /path/to/corpus \
    --max_c_len 300 \
    --init_checkpoint /path/to/saved/model/checkpoint_best.pt \
    --save_path /path/to/encoded/corpus

We pass the corpus (CORD-19) to our trained encoder in our dense retrieval model. Corpus embeddings are indexed.

Here are things to keep in mind:

1. The predict_file flag should take in your CORD-19 dataset path. It should be a .jsonl file.
2. Look at your output_dir path when you ran train.sh. After training our model, we should now have a checkpoint in that folder. Copy the exact path onto
the init_checkpoint flag here.
3. As previously mentioned, the result of these commands is the corpus (CORD-19) embeddings become indexed. The embeddings are saved in the save_path flag argument. Create that directory path as you wish.

Evaluation

You can run scripts/eval.sh to evaluate the document retrieval model.

CUDA_VISIBLE_DEVICES=0 python ../eval_retrieval.py \
    ../data/dense_test.txt \
    /path/to/encoded/corpus \
    /path/to/saved/model/checkpoint_best.pt \
    --batch-size 1000 --model-name microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext  --topk 100 --dimension 768

We evaluate retrieval on a test set from COVID-QA. We determine the percentage of questions that have retrieved paragraphs with the correct answer across different top-k settings.

We do that in the following 3 ways:

  1. exact answer matches in top-k retrievals
  2. matching articles in top-k retrievals
  3. F1 and Siamese BERT fuzzy matching

Here are things to think about:

1. The first, second, and third arguments are our COVID-QA test set, corpus indexed embeddings, and retrieval model respectively.
2. The other flag that is important is the topk one. This flag determines the quantity of retrieved CORD19 paragraphs.

Reading Comprehension

We utilize the HuggingFace's question answering scripts to train and evaluate our reading comprehension model. This can be done with scripts/qa.sh. The scripts are modified to allow for the extraction of multiple answer spans per document. We use a BioBERT model fine-tuned on SQuAD V2 as our pre-trained model.

CUDA_VISIBLE_DEVICES=0 python ../qa/run_qa.py \
  --model_name_or_path ktrapeznikov/biobert_v1.1_pubmed_squad_v2 \
  --train_file ../data/qa_train.json \
  --validation_file ../data/qa_dev.json \
  --test_file ../data/qa_test.json \
  --do_train \
  --do_eval \
  --do_predict \
  --per_device_train_batch_size 12 \
  --learning_rate 3e-5 \
  --num_train_epochs 5 \
  --max_seq_length 384 \
  --doc_stride 128 \
  --output_dir /path/to/model/output \

Demo

We combine the retrieval model and reading model for an end-to-end open-domain question answering demo with Streamlit. This can be run with scripts/demo.sh.

CUDA_VISIBLE_DEVICES=0 streamlit run ../covid_qa_demo.py -- \
  --retriever-model-name microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext \
  --retriever-model path/to/saved/retriever_model/checkpoint_best.pt \
  --qa-model-name ktrapeznikov/biobert_v1.1_pubmed_squad_v2 \
  --qa-model /path/to/saved/qa_model \
  --index-path /path/to/encoded/corpus

Here are things to keep in mind:

1. retriever-model is the checkpoint file of your trained retriever model.
2. qa-model is the trained reading comprehension model.
3. index-path is the path to the encoded corpus embeddings.

Requirements

See requirements.txt

Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
performing moving objects segmentation using image processing techniques with opencv and numpy

Moving Objects Segmentation On this project I tried to perform moving objects segmentation using background subtraction technique. the introduced meth

Mohamed Magdy 15 Dec 12, 2022
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
Object tracking and object detection is applied to track golf puts in real time and display stats/games.

Putting_Game Object tracking and object detection is applied to track golf puts in real time and display stats/games. Works best with the Perfect Prac

Max 1 Dec 29, 2021
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
Official pytorch implementation of paper "Image-to-image Translation via Hierarchical Style Disentanglement".

HiSD: Image-to-image Translation via Hierarchical Style Disentanglement Official pytorch implementation of paper "Image-to-image Translation

364 Dec 14, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
End-to-end image segmentation kit based on PaddlePaddle.

English | 简体中文 PaddleSeg PaddleSeg has released the new version including the following features: Our team won the 6.2k Jan 02, 2023

A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022
This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners.

LiST (Lite Self-Training) This is the implementation of the paper LiST: Lite Self-training Makes Efficient Few-shot Learners. LiST is short for Lite S

Microsoft 28 Dec 07, 2022
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Header-only library for using Keras models in C++.

frugally-deep Use Keras models in C++ with ease Table of contents Introduction Usage Performance Requirements and Installation FAQ Introduction Would

Tobias Hermann 927 Jan 05, 2023
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022