A TensorFlow implementation of DeepMind's WaveNet paper

Overview

A TensorFlow implementation of DeepMind's WaveNet paper

Build Status

This is a TensorFlow implementation of the WaveNet generative neural network architecture for audio generation.

The WaveNet neural network architecture directly generates a raw audio waveform, showing excellent results in text-to-speech and general audio generation (see the DeepMind blog post and paper for details).

The network models the conditional probability to generate the next sample in the audio waveform, given all previous samples and possibly additional parameters.

After an audio preprocessing step, the input waveform is quantized to a fixed integer range. The integer amplitudes are then one-hot encoded to produce a tensor of shape (num_samples, num_channels).

A convolutional layer that only accesses the current and previous inputs then reduces the channel dimension.

The core of the network is constructed as a stack of causal dilated layers, each of which is a dilated convolution (convolution with holes), which only accesses the current and past audio samples.

The outputs of all layers are combined and extended back to the original number of channels by a series of dense postprocessing layers, followed by a softmax function to transform the outputs into a categorical distribution.

The loss function is the cross-entropy between the output for each timestep and the input at the next timestep.

In this repository, the network implementation can be found in model.py.

Requirements

TensorFlow needs to be installed before running the training script. Code is tested on TensorFlow version 1.0.1 for Python 2.7 and Python 3.5.

In addition, librosa must be installed for reading and writing audio.

To install the required python packages, run

pip install -r requirements.txt

For GPU support, use

pip install -r requirements_gpu.txt

Training the network

You can use any corpus containing .wav files. We've mainly used the VCTK corpus (around 10.4GB, Alternative host) so far.

In order to train the network, execute

python train.py --data_dir=corpus

to train the network, where corpus is a directory containing .wav files. The script will recursively collect all .wav files in the directory.

You can see documentation on each of the training settings by running

python train.py --help

You can find the configuration of the model parameters in wavenet_params.json. These need to stay the same between training and generation.

Global Conditioning

Global conditioning refers to modifying the model such that the id of a set of mutually-exclusive categories is specified during training and generation of .wav file. In the case of the VCTK, this id is the integer id of the speaker, of which there are over a hundred. This allows (indeed requires) that a speaker id be specified at time of generation to select which of the speakers it should mimic. For more details see the paper or source code.

Training with Global Conditioning

The instructions above for training refer to training without global conditioning. To train with global conditioning, specify command-line arguments as follows:

python train.py --data_dir=corpus --gc_channels=32

The --gc_channels argument does two things:

  • It tells the train.py script that it should build a model that includes global conditioning.
  • It specifies the size of the embedding vector that is looked up based on the id of the speaker.

The global conditioning logic in train.py and audio_reader.py is "hard-wired" to the VCTK corpus at the moment in that it expects to be able to determine the speaker id from the pattern of file naming used in VCTK, but can be easily be modified.

Generating audio

Example output generated by @jyegerlehner based on speaker 280 from the VCTK corpus.

You can use the generate.py script to generate audio using a previously trained model.

Generating without Global Conditioning

Run

python generate.py --samples 16000 logdir/train/2017-02-13T16-45-34/model.ckpt-80000

where logdir/train/2017-02-13T16-45-34/model.ckpt-80000 needs to be a path to previously saved model (without extension). The --samples parameter specifies how many audio samples you would like to generate (16000 corresponds to 1 second by default).

The generated waveform can be played back using TensorBoard, or stored as a .wav file by using the --wav_out_path parameter:

python generate.py --wav_out_path=generated.wav --samples 16000 logdir/train/2017-02-13T16-45-34/model.ckpt-80000

Passing --save_every in addition to --wav_out_path will save the in-progress wav file every n samples.

python generate.py --wav_out_path=generated.wav --save_every 2000 --samples 16000 logdir/train/2017-02-13T16-45-34/model.ckpt-80000

Fast generation is enabled by default. It uses the implementation from the Fast Wavenet repository. You can follow the link for an explanation of how it works. This reduces the time needed to generate samples to a few minutes.

To disable fast generation:

python generate.py --samples 16000 logdir/train/2017-02-13T16-45-34/model.ckpt-80000 --fast_generation=false

Generating with Global Conditioning

Generate from a model incorporating global conditioning as follows:

python generate.py --samples 16000  --wav_out_path speaker311.wav --gc_channels=32 --gc_cardinality=377 --gc_id=311 logdir/train/2017-02-13T16-45-34/model.ckpt-80000

Where:

--gc_channels=32 specifies 32 is the size of the embedding vector, and must match what was specified when training.

--gc_cardinality=377 is required as 376 is the largest id of a speaker in the VCTK corpus. If some other corpus is used, then this number should match what is automatically determined and printed out by the train.py script at training time.

--gc_id=311 specifies the id of speaker, speaker 311, for which a sample is to be generated.

Running tests

Install the test requirements

pip install -r requirements_test.txt

Run the test suite

./ci/test.sh

Missing features

Currently there is no local conditioning on extra information which would allow context stacks or controlling what speech is generated.

Related projects

Owner
Igor Babuschkin
Igor Babuschkin
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

11 Oct 08, 2022
code for the ICLR'22 paper: On Robust Prefix-Tuning for Text Classification

On Robust Prefix-Tuning for Text Classification Prefix-tuning has drawed much attention as it is a parameter-efficient and modular alternative to adap

Zonghan Yang 12 Nov 30, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
TensorFlow port of PyTorch Image Models (timm) - image models with pretrained weights.

TensorFlow-Image-Models Introduction Usage Models Profiling License Introduction TensorfFlow-Image-Models (tfimm) is a collection of image models with

Martins Bruveris 227 Dec 20, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
Course materials for Fall 2021 "CIS6930 Topics in Computing for Data Science" at New College of Florida

Fall 2021 CIS6930 Topics in Computing for Data Science This repository hosts course materials used for a 13-week course "CIS6930 Topics in Computing f

Yoshi Suhara 101 Nov 30, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
A list of multi-task learning papers and projects.

This page contains a list of papers on multi-task learning for computer vision. Please create a pull request if you wish to add anything. If you are interested, consider reading our recent survey pap

svandenh 297 Dec 17, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg SĂ©mery 6 Dec 05, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
"Inductive Entity Representations from Text via Link Prediction" @ The Web Conference 2021

Inductive entity representations from text via link prediction This repository contains the code used for the experiments in the paper "Inductive enti

Daniel Daza 45 Jan 09, 2023
ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Mi

Dequan Wang 204 Dec 25, 2022
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
A PyTorch Implementation of SphereFace.

SphereFace A PyTorch Implementation of SphereFace. The code can be trained on CASIA-Webface and the best accuracy on LFW is 99.22%. SphereFace: Deep H

carwin 685 Dec 09, 2022
Mask R-CNN for object detection and instance segmentation on Keras and TensorFlow

Mask R-CNN for Object Detection and Segmentation This is an implementation of Mask R-CNN on Python 3, Keras, and TensorFlow. The model generates bound

Matterport, Inc 22.5k Jan 04, 2023