NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

Overview

NeoDTI

NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

Recent Update 09/06/2018

L2 regularization is added.

Requirements

  • Tensorflow (tested on version 1.0.1 and version 1.2.0)
  • tflearn
  • numpy (tested on version 1.13.3 and version 1.14.0)
  • sklearn (tested on version 0.18.1 and version 0.19.0)

Quick start

To reproduce our results:

  1. Unzip data.zip in ./data.
  2. Run NeoDTI_cv.py to reproduce the cross validation results of NeoDTI. Options are:
    -d: The embedding dimension d, default: 1024.
    -n: Global norm to be clipped, default: 1.
    -k: The dimension of project matrices, default: 512.
    -r: Positive and negative. Two choices: ten and all, the former one sets the positive:negative = 1:10, the latter one considers all unknown DTIs as negative examples. Default: ten.
    -t: Test scenario. The DTI matrix to be tested. Choices are: o, mat_drug_protein.txt will be tested; homo, mat_drug_protein_homo_protein_drug.txt will be tested; drug, mat_drug_protein_drug.txt will be tested; disease, mat_drug_protein_disease.txt will be tested; sideeffect, mat_drug_protein_sideeffect.txt will be tested; unique, mat_drug_protein_drug_unique.txt will be tested. Default: o.
  3. Run NeoDTI_cv_with_aff.py to reproduce the cross validation results of NeoDTI with additional compound-protein binding affinity data. Options are:
    -d: The embedding dimension d, default: 1024.
    -n: Global norm to be clipped, default: 1.
    -k: The dimension of project matrices, default: 512.

Data description

  • drug.txt: list of drug names.
  • protein.txt: list of protein names.
  • disease.txt: list of disease names.
  • se.txt: list of side effect names.
  • drug_dict_map: a complete ID mapping between drug names and DrugBank ID.
  • protein_dict_map: a complete ID mapping between protein names and UniProt ID.
  • mat_drug_se.txt : Drug-SideEffect association matrix.
  • mat_protein_protein.txt : Protein-Protein interaction matrix.
  • mat_drug_drug.txt : Drug-Drug interaction matrix.
  • mat_protein_disease.txt : Protein-Disease association matrix.
  • mat_drug_disease.txt : Drug-Disease association matrix.
  • mat_protein_drug.txt : Protein-Drug interaction matrix.
  • mat_drug_protein.txt : Drug-Protein interaction matrix.
  • Similarity_Matrix_Drugs.txt : Drug & compound similarity scores based on chemical structures of drugs ([0,708) are drugs, the rest are compounds).
  • Similarity_Matrix_Proteins.txt : Protein similarity scores based on primary sequences of proteins.
  • mat_drug_protein_homo_protein_drug.txt: Drug-Protein interaction matrix, in which DTIs with similar drugs (i.e., drug chemical structure similarities > 0.6) or similar proteins (i.e., protein sequence similarities > 40%) were removed (see the paper).
  • mat_drug_protein_drug.txt: Drug-Protein interaction matrix, in which DTIs with drugs sharing similar drug interactions (i.e., Jaccard similarities > 0.6) were removed (see the paper).
  • mat_drug_protein_sideeffect.txt: Drug-Protein interaction matrix, in which DTIs with drugs sharing similar side effects (i.e., Jaccard similarities > 0.6) were removed (see the paper).
  • mat_drug_protein_disease.txt: Drug-Protein interaction matrix, in which DTIs with drugs or proteins sharing similar diseases (i.e., Jaccard similarities > 0.6) were removed (see the paper).
  • mat_drug_protein_unique: Drug-Protein interaction matrix, in which known unique and non-unique DTIs were labelled as 3 and 1, respectively, the corresponding unknown ones were labelled as 2 and 0 (see the paper for the definition of unique).
  • mat_compound_protein_bindingaffinity.txt: Compound-Protein binding affinity matrix (measured by negative logarithm of Ki).

All entities (i.e., drugs, compounds, proteins, diseases and side-effects) are organized in the same order across all files. These files: drug.txt, protein.txt, disease.txt, se.txt, drug_dict_map, protein_dict_map, mat_drug_se.txt, mat_protein_protein.txt, mat_drug_drug.txt, mat_protein_disease.txt, mat_drug_disease.txt, mat_protein_drug.txt, mat_drug_protein.txt, Similarity_Matrix_Proteins.txt, are extracted from https://github.com/luoyunan/DTINet.

Contacts

If you have any questions or comments, please feel free to email Fangping Wan (wfp15[at]tsinghua[dot]org[dot]cn) and/or Jianyang Zeng (zengjy321[at]tsinghua[dot]edu[dot]cn).

Owner
PhD of Computer Science
PaddleBoBo是基于PaddlePaddle和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目

PaddleBoBo - 元宇宙时代,你也可以动手做一个虚拟主播。 PaddleBoBo是基于飞桨PaddlePaddle深度学习框架和PaddleSpeech、PaddleGAN等开发套件的虚拟主播快速生成项目。PaddleBoBo致力于简单高效、可复用性强,只需要一张带人像的图片和一段文字,就能

502 Jan 08, 2023
Cossim - Sharpened Cosine Distance implementation in PyTorch

Sharpened Cosine Distance PyTorch implementation of the Sharpened Cosine Distanc

Istvan Fehervari 10 Mar 22, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
Using NumPy to solve the equations of fluid mechanics together with Finite Differences, explicit time stepping and Chorin's Projection methods

Computational Fluid Dynamics in Python Using NumPy to solve the equations of fluid mechanics 🌊 🌊 🌊 together with Finite Differences, explicit time

Felix Köhler 4 Nov 12, 2022
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
Reinforcement learning for self-driving in a 3D simulation

SelfDrive_AI Reinforcement learning for self-driving in a 3D simulation (Created using UNITY-3D) 1. Requirements for the SelfDrive_AI Gym You need Pyt

Surajit Saikia 17 Dec 14, 2021
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
Infrastructure as Code (IaC) for a self-hosted version of Gnosis Safe on AWS

Welcome to Yearn Gnosis Safe! Setting up your local environment Infrastructure Deploying Gnosis Safe Prerequisites 1. Create infrastructure for secret

Numan 16 Jul 18, 2022
Self-Learned Video Rain Streak Removal: When Cyclic Consistency Meets Temporal Correspondence

In this paper, we address the problem of rain streaks removal in video by developing a self-learned rain streak removal method, which does not require any clean groundtruth images in the training pro

Yang Wenhan 44 Dec 06, 2022
Alex Pashevich 62 Dec 24, 2022
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
Exploration & Research into cross-domain MEV. Initial focus on ETH/POLYGON.

xMEV, an apt exploration This is a small exploration on the xMEV opportunities between Polygon and Ethereum. It's a data analysis exercise on a few pa

odyslam.eth 7 Oct 18, 2022
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
Open CV - Convert a picture to look like a cartoon sketch in python

Use the video https://www.youtube.com/watch?v=k7cVPGpnels for initial learning.

Sammith S Bharadwaj 3 Jan 29, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 09, 2023