"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

Overview

bandit-nmt

THIS REPO DEMONSTRATES HOW TO INTEGRATE A POLICY GRADIENT METHOD INTO NMT. FOR A STATE-OF-THE-ART NMT CODEBASE, VISIT simple-nmt.

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-decoder model and benchmarks the combination under simulated noisy rewards.

Requirements:

  • Python 3.6
  • PyTorch 0.2

NOTE: as of Sep 16 2017, the code got 2x slower when I upgraded to PyTorch 2.0. This is a known issue and PyTorch is fixing it.

IMPORTANT: Set home directory (otherwise scripts will not run correctly):

> export BANDIT_HOME=$PWD
> export DATA=$BANDIT_HOME/data
> export SCRIPT=$BANDIT_HOME/scripts

Data extraction

Download pre-processing scripts

> cd $DATA/scripts
> bash download_scripts.sh

For German-English

> cd $DATA/en-de
> bash extract_data_de_en.sh

NOTE: train_2014 and train_2015 highly overlap. Please be cautious when using them for other projects.

Data should be ready in $DATA/en-de/prep

TODO: Chinese-English needs segmentation

Data pre-processing

> cd $SCRIPT
> bash make_data.sh de en

Pretraining

Pretrain both actor and critic

> cd $SCRIPT
> bash pretrain.sh en-de $YOUR_LOG_DIR

See scripts/pretrain.sh for more details.

Pretrain actor only

> cd $BANDIT_HOME
> python train.py -data $YOUR_DATA -save_dir $YOUR_SAVE_DIR -end_epoch 10

Reinforcement training

> cd $BANDIT_HOME

From scratch

> python train.py -data $YOUR_DATA -save_dir $YOUR_SAVE_DIR -start_reinforce 10 -end_epoch 100 -critic_pretrain_epochs 5

From a pretrained model

> python train.py -data $YOUR_DATA -load_from $YOUR_MODEL -save_dir $YOUR_SAVE_DIR -start_reinforce -1 -end_epoch 100 -critic_pretrain_epochs 5

Perturbed rewards

For example, use thumb up/thump down reward:

> cd $BANDIT_HOME
> python train.py -data $YOUR_DATA -load_from $YOUR_MODEL -save_dir $YOUR_SAVE_DIR -start_reinforce -1 -end_epoch 100 -critic_pretrain_epochs 5 -pert_func bin -pert_param 1

See lib/metric/PertFunction.py for more types of function.

Evaluation

> cd $BANDIT_HOME

On heldout sets (heldout BLEU):

> python train.py -data $YOUR_DATA -load_from $YOUR_MODEL -eval -save_dir .

On bandit set (per-sentence BLEU):

> python train.py -data $YOUR_DATA -load_from $YOUR_MODEL -eval_sample -save_dir .
Owner
Khanh Nguyen
PhD student in Machine Learning student at University of Maryland, College Park
Khanh Nguyen
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 21k Jan 06, 2023
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
Code and real data for the paper "Counterfactual Temporal Point Processes", available at arXiv.

counterfactual-tpp This is a repository containing code and real data for the paper Counterfactual Temporal Point Processes. Pre-requisites This code

Networks Learning 11 Dec 09, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
RL Algorithms with examples in Python / Pytorch / Unity ML agents

Reinforcement Learning Project This project was created to make it easier to get started with Reinforcement Learning. It now contains: An implementati

Rogier Wachters 3 Aug 19, 2022
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring

Enhancing Column Generation by a Machine-Learning-BasedPricing Heuristic for Graph Coloring (to appear at AAAI 2022) We propose a machine-learning-bas

YunzhuangS 2 May 02, 2022
Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral) Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibe

Mahmoud Afifi 76 Jan 07, 2023
This repository contains all code and data for the Inside Out Visual Place Recognition task

Inside Out Visual Place Recognition This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognitio

15 May 21, 2022
DAN: Unfolding the Alternating Optimization for Blind Super Resolution

DAN-Basd-on-Openmmlab DAN: Unfolding the Alternating Optimization for Blind Super Resolution We reproduce DAN via mmediting based on open-sourced code

AlexZou 72 Dec 13, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
[ICCV2021] Learning to Track Objects from Unlabeled Videos

Unsupervised Single Object Tracking (USOT) 🌿 Learning to Track Objects from Unlabeled Videos Jilai Zheng, Chao Ma, Houwen Peng and Xiaokang Yang 2021

53 Dec 28, 2022
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
An official PyTorch implementation of the TKDE paper "Self-Supervised Graph Representation Learning via Topology Transformations".

Self-Supervised Graph Representation Learning via Topology Transformations This repository is the official PyTorch implementation of the following pap

Hsiang Gao 2 Oct 31, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023