[ICLR 2022] DAB-DETR: Dynamic Anchor Boxes are Better Queries for DETR

Related tags

Deep LearningDAB-DETR
Overview

DAB-DETR

This is the official pytorch implementation of our ICLR 2022 paper DAB-DETR.

Authors: Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu, Lei Zhang

News

[2022/4/14] We release the .pptx file of our DETR-like models comparison figure for those who want to draw model arch figures in paper.
[2022/4/12] We fix a bug in the file datasets/coco_eval.py. The parameter useCats of CocoEvaluator should be True by default.
[2022/4/9] Our code is available!
[2022/3/9] We build a repo Awesome Detection Transformer to present papers about transformer for detection and segmenttion. Welcome to your attention!
[2022/3/8] Our new work DINO set a new record of 63.3AP on the MS-COCO leader board.
[2022/3/8] Our new work DN-DETR has been accpted by CVPR 2022!
[2022/1/21] Our work has been accepted to ICLR 2022.

Abstract

We present in this paper a novel query formulation using dynamic anchor boxes for DETR (DEtection TRansformer) and offer a deeper understanding of the role of queries in DETR. This new formulation directly uses box coordinates as queries in Transformer decoders and dynamically updates them layer-by-layer. Using box coordinates not only helps using explicit positional priors to improve the query-to-feature similarity and eliminate the slow training convergence issue in DETR, but also allows us to modulate the positional attention map using the box width and height information. Such a design makes it clear that queries in DETR can be implemented as performing soft ROI pooling layer-by-layer in a cascade manner. As a result, it leads to the best performance on MS-COCO benchmark among the DETR-like detection models under the same setting, e.g., AP 45.7% using ResNet50-DC5 as backbone trained in 50 epochs. We also conducted extensive experiments to confirm our analysis and verify the effectiveness of our methods.

Model

arch

Model Zoo

We provide our models with R50 backbone, including both DAB-DETR and DAB-Deformable-DETR (See Appendix C of our paper for more details).

name backbone box AP Log/Config/Checkpoint Where in Our Paper
0 DAB-DETR-R50 R50 42.2 Google Drive | Tsinghua Cloud Table 2
1 DAB-DETR-R50(3 pat)1 R50 42.6 Google Drive | Tsinghua Cloud Table 2
2 DAB-DETR-R50-DC5 R50 44.5 Google Drive | Tsinghua Cloud Table 2
3 DAB-DETR-R50-DC5-fixxy2 R50 44.7 Google Drive | Tsinghua Cloud Table 8. Appendix H.
4 DAB-DETR-R50-DC5(3 pat) R50 45.7 Google Drive | Tsinghua Cloud Table 2
5 DAB-Deformbale-DETR
(Deformbale Encoder Only)3
R50 46.9 Baseline for DN-DETR
6 DAB-Deformable-DETR-R504 R50 48.1 Google Drive | Tsinghua Cloud Extend Results for Table 5,
Appendix C.

Notes:

  • 1: The models with marks (3 pat) are trained with multiple pattern embeds (refer to Anchor DETR or our paper for more details.).
  • 2: The term "fixxy" means we use random initialization of anchors and do not update their parameters during training (See Appendix H of our paper for more details).
  • 3: The DAB-Deformbale-DETR(Deformbale Encoder Only) is a multiscale version of our DAB-DETR. See DN-DETR for more details.
  • 4: The result here is better than the number in our paper, as we use different losses coefficients during training. Refer to our config file for more details.

Usage

Installation

We use the great DETR project as our codebase, hence no extra dependency is needed for our DAB-DETR. For the DAB-Deformable-DETR, you need to compile the deformable attention operator manually.

We test our models under python=3.7.3,pytorch=1.9.0,cuda=11.1. Other versions might be available as well.

  1. Clone this repo
git clone https://github.com/IDEA-opensource/DAB-DETR.git
cd DAB-DETR
  1. Install Pytorch and torchvision

Follow the instrction on https://pytorch.org/get-started/locally/.

# an example:
conda install -c pytorch pytorch torchvision
  1. Install other needed packages
pip install -r requirements.txt
  1. Compiling CUDA operators
cd models/dab_deformable_detr/ops
python setup.py build install
# unit test (should see all checking is True)
python test.py
cd ../../..

Data

Please download COCO 2017 dataset and organize them as following:

COCODIR/
  ├── train2017/
  ├── val2017/
  └── annotations/
  	├── instances_train2017.json
  	└── instances_val2017.json

Run

We use the standard DAB-DETR-R50 and DAB-Deformable-DETR-R50 as examples for training and evalulation.

Eval our pretrianed models

Download our DAB-DETR-R50 model checkpoint from this link and perform the command below. You can expect to get the final AP about 42.2.

For our DAB-Deformable-DETR (download here), the final AP expected is 48.1.

# for dab_detr: 42.2 AP
python main.py -m dab_detr \
  --output_dir logs/DABDETR/R50 \
  --batch_size 1 \
  --coco_path /path/to/your/COCODIR \ # replace the args to your COCO path
  --resume /path/to/our/checkpoint \ # replace the args to your checkpoint path
  --eval

# for dab_deformable_detr: 48.1 AP
python main.py -m dab_deformable_detr \
  --output_dir logs/dab_deformable_detr/R50 \
  --batch_size 2 \
  --coco_path /path/to/your/COCODIR \ # replace the args to your COCO path
  --resume /path/to/our/checkpoint \ # replace the args to your checkpoint path
  --transformer_activation relu \
  --eval

Training your own models

Similarly, you can also train our model on a single process:

# for dab_detr
python main.py -m dab_detr \
  --output_dir logs/DABDETR/R50 \
  --batch_size 1 \
  --epochs 50 \
  --lr_drop 40 \
  --coco_path /path/to/your/COCODIR  # replace the args to your COCO path

Distributed Run

However, as the training is time consuming, we suggest to train the model on multi-device.

If you plan to train the models on a cluster with Slurm, here is an example command for training:

# for dab_detr: 42.2 AP
python run_with_submitit.py \
  --timeout 3000 \
  --job_name DABDETR \
  --coco_path /path/to/your/COCODIR \
  -m dab_detr \
  --job_dir logs/DABDETR/R50_%j \
  --batch_size 2 \
  --ngpus 8 \
  --nodes 1 \
  --epochs 50 \
  --lr_drop 40 

# for dab_deformable_detr: 48.1 AP
python run_with_submitit.py \
  --timeout 3000 \
  --job_name dab_deformable_detr \
  --coco_path /path/to/your/COCODIR \
  -m dab_deformable_detr \
  --transformer_activation relu \
  --job_dir logs/dab_deformable_detr/R50_%j \
  --batch_size 2 \
  --ngpus 8 \
  --nodes 1 \
  --epochs 50 \
  --lr_drop 40 

The final AP should be similar to ours. (42.2 for DAB-DETR and 48.1 for DAB-Deformable-DETR). Our configs and logs(see the model_zoo) could be used as references as well.

Notes:

  • The results are sensitive to the batch size. We use 16(2 images each GPU x 8 GPUs) by default.

Or run with multi-processes on a single node:

# for dab_detr: 42.2 AP
python -m torch.distributed.launch --nproc_per_node=8 \
  main.py -m dab_detr \
  --output_dir logs/DABDETR/R50 \
  --batch_size 2 \
  --epochs 50 \
  --lr_drop 40 \
  --coco_path /path/to/your/COCODIR

# for dab_deformable_detr: 48.1 AP
python -m torch.distributed.launch --nproc_per_node=8 \
  main.py -m dab_deformable_detr \
  --output_dir logs/dab_deformable_detr/R50 \
  --batch_size 2 \
  --epochs 50 \
  --lr_drop 40 \
  --transformer_activation relu \
  --coco_path /path/to/your/COCODIR

Detailed Model

arch

Comparison of DETR-like Models

The source file can be found here.

comparison

Links

DINO: DETR with Improved DeNoising Anchor Boxes for End-to-End Object Detection.
Hao Zhang*, Feng Li*, Shilong Liu*, Lei Zhang, Hang Su, Jun Zhu, Lionel M. Ni, Heung-Yeung Shum
arxiv 2022.
[paper] [code]

DN-DETR: Accelerate DETR Training by Introducing Query DeNoising.
Feng Li*, Hao Zhang*, Shilong Liu, Jian Guo, Lionel M. Ni, Lei Zhang.
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
[paper] [code]

License

DAB-DETR is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Copyright (c) IDEA. All rights reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use these files except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.

Citation

@inproceedings{
  liu2022dabdetr,
  title={{DAB}-{DETR}: Dynamic Anchor Boxes are Better Queries for {DETR}},
  author={Shilong Liu and Feng Li and Hao Zhang and Xiao Yang and Xianbiao Qi and Hang Su and Jun Zhu and Lei Zhang},
  booktitle={International Conference on Learning Representations},
  year={2022},
  url={https://openreview.net/forum?id=oMI9PjOb9Jl}
}
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
High-resolution networks and Segmentation Transformer for Semantic Segmentation

High-resolution networks and Segmentation Transformer for Semantic Segmentation Branches This is the implementation for HRNet + OCR. The PyTroch 1.1 v

HRNet 2.8k Jan 07, 2023
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
SEC'21: Sparse Bitmap Compression for Memory-Efficient Training onthe Edge

Training Deep Learning Models on The Edge Training on the Edge enables continuous learning from new data for deployed neural networks on memory-constr

Brown University Scale Lab 4 Nov 18, 2022
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
MIM: MIM Installs OpenMMLab Packages

MIM provides a unified API for launching and installing OpenMMLab projects and their extensions, and managing the OpenMMLab model zoo.

OpenMMLab 254 Jan 04, 2023
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
A clean implementation based on AlphaZero for any game in any framework + tutorial + Othello/Gobang/TicTacToe/Connect4 and more

Alpha Zero General (any game, any framework!) A simplified, highly flexible, commented and (hopefully) easy to understand implementation of self-play

Surag Nair 3.1k Jan 05, 2023
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
Pretty Tensor - Fluent Neural Networks in TensorFlow

Pretty Tensor provides a high level builder API for TensorFlow. It provides thin wrappers on Tensors so that you can easily build multi-layer neural networks.

Google 1.2k Dec 29, 2022
Convolutional Neural Network for Text Classification in Tensorflow

This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post. It is slightly simplified implementation of Kim's Convo

Denny Britz 5.5k Jan 02, 2023
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
Code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”

GATER This repository contains the code for our EMNLP 2021 paper “Heterogeneous Graph Neural Networks for Keyphrase Generation”. Our implementation is

Jiacheng Ye 12 Nov 24, 2022
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies

To make the comparison with Animatable NeRF easier on the Human3.6M dataset, we save the quantitative results at here, which also contains the results of other methods, including Neural Body, D-NeRF,

ZJU3DV 359 Jan 08, 2023
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022