This is the source code for generating the ASL-Skeleton3D and ASL-Phono datasets. Check out the README.md for more details.

Overview

ASL-Skeleton3D and ASL-Phono Datasets Generator

Build Code Quality DOI - ASL-Skeleton3D DOI - ASL-Phono

The ASL-Skeleton3D contains a representation based on mapping into the three-dimensional space the coordinates of the signers in the ASLLVD dataset. The ASL-Phono, in turn, introduces a novel linguistics-based representation, which describes the signs in the ASLLVD dataset in terms of a set of attributes of the American Sign Language phonology.

This is the source code used to generate the ASL-Skeleton3D and ASL-Phono datasets, which are based on the American Sign Language Lexicon Video Dataset (ASLLVD).

Learn more about the datasets:

  • Paper: "ASL-Skeleton3D and ASL-Phono: Two NovelDatasets for the American Sign Language" -> CIn

Download

Download the processed datasets by using the links below:

Generate

If you prefer generating the datasets by yourself, this section presents the requirements, setup and procedures to execute the code.

The generation is a process comprising the phases below, which start by the retrieval of the original ASLLVD samples for then computing additional properties, as follows:

  • download: original samples (video sequences) are obtained from the ASLLVD.
  • segment: signs are segmented from the original samples.
  • skeleton: signer skeletons are estimated.
  • normalize: the coordinates of the skeletons are normalized.
  • phonology: the phonological attributes are extracted.

Requirements

To generate the datasets, your system will need the following software configured:

OpenPose will require additional hardware and software configured which might include a NVIDIA GPU and related drivers and software. Please, check this link for the full list.

Recommended

If you prefer running a Docker container with the software requirements already configured, check out the link below -- just make sure to have a GPU available to your Docker environment:

Installation

Once observed the requirements, checkout the source code and execute the following command, which will setup your virtual environment and dependencies:

$ poetry install

Configuration

There is a set of files in the folder ./config that will help you to configure the parameters for generating the datasets. A good starting point is to take a look into the ./config/template.yaml file, which contains a basic structure with all the properties documented.

You will also find other predefined configurations that might help you to generate the datasets. Just remember to always review the comments inside of the files to fine-tune the execution to your environment.

Learn about the configurations available in the ./config/template.yaml, which contains the properties documented.

Generation

ASL-Skeleton3D

The ASL-Skeleton3D is generated by using the configuration predefined in the file ./config/asl-skeleton3d.yaml. Thus, to start processing the dataset, execute the following command informing this file as the parameter -c (or --config):

$ poetry run python main.py -c ./config/asl-skeleton3d.yaml

The resulting dataset will be located in the folder configured as output for the phase normalize, which by default is set to ../work/dataset/normalized.

ASL-Phono

The ASL-Skeleton3D is generated by using the configuration predefined in the file ./config/asl-phono.yaml. Thus, to start processing the dataset, execute the following command informing this file as the parameter -c (or --config):

$ poetry run python main.py -c ./config/asl-phono.yaml

The resulting dataset will be located in the folder configured as output for the phase phonology, which by default is set to ../work/dataset/phonology.

Logs

The logs from the datasets processing will be recorded in the file ./output.log.

Deprecated datasets

Previously, we introduced the dataset ASLLVD-Skeleton, which is now being replaced by the ASL-Skeleton3D. Read more about the old dataset in the links:

Citation

Please cite the following paper if you use this repository in your reseach.

@article{asl-datasets-2021,
  title     = {ASL-Skeleton3D and ASL-Phono: Two Novel Datasets for the American Sign Language},
  author    = {Cleison Correia de Amorim and Cleber Zanchettin},
  year      = {2021},
}

Contact

For any question, feel free to contact me at:

You might also like...
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

Source code for
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.
The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding.

SuperGen The source code for Generating Training Data with Language Models: Towards Zero-Shot Language Understanding. Requirements Before running, you

Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)
Official code for Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018)

MUC Next Check-ins Prediction via History and Friendship on Location-Based Social Networks (MDM 2018) Performance Details for Accuracy: | Dataset

The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory
The LaTeX and Python code for generating the paper, experiments' results and visualizations reported in each paper is available (whenever possible) in the paper's directory

This repository contains the software implementation of most algorithms used or developed in my research. The LaTeX and Python code for generating the

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.
Code for paper ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop.

Who Left the Dogs Out? Evaluation and demo code for our ECCV 2020 paper: Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization

Comments
  • keypoint scale?

    keypoint scale?

    Hello this data looks to be amazing, but making use of it takes a bit more knowledge about how to actually translate the x,y values into usable points.

    It seems you guys have taken advantage of the --keypoint_scale in OpenPose - could you post something about how to translate these decimal numbers back into something more like a traditional x,y value? I'd like to draw these points using standard javascript, but right now I can't figure how how to rescale them back to size.

    Any help would be greatly appreciated!

    opened by mspanish 0
Releases(v1.0.0)
Owner
Cleison Amorim
Cleison Amorim
Code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data by Minimizing Predictive Variance

Semi-supervised Deep Kernel Learning This is the code that accompanies the paper Semi-supervised Deep Kernel Learning: Regression with Unlabeled Data

58 Oct 26, 2022
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness

Computationally Efficient Optimization of Plackett-Luce Ranking Models for Relevance and Fairness This repository contains the code used for the exper

H.R. Oosterhuis 28 Nov 29, 2022
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
Python Implementation of Chess Playing AI with variable difficulty

Chess AI with variable difficulty level implemented using the MiniMax AB-Pruning Algorithm

Ali Imran 7 Feb 20, 2022
UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language

UA-GEC: Grammatical Error Correction and Fluency Corpus for the Ukrainian Language This repository contains UA-GEC data and an accompanying Python lib

Grammarly 226 Dec 29, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
Distributed Evolutionary Algorithms in Python

DEAP DEAP is a novel evolutionary computation framework for rapid prototyping and testing of ideas. It seeks to make algorithms explicit and data stru

Distributed Evolutionary Algorithms in Python 4.9k Jan 05, 2023
PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages Abstract NLP applications for code-mixed (CM) or mix-li

Mohsin Ali, Mohammed 1 Nov 12, 2021
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
StarGAN-ZSVC: Unofficial PyTorch Implementation

This repository is an unofficial PyTorch implementation of StarGAN-ZSVC by Matthew Baas and Herman Kamper. This repository provides both model architectures and the code to inference or train them.

Jirayu Burapacheep 11 Aug 28, 2022
"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri

"Projelerle Yapay Zeka Ve Bilgisayarlı Görü" Kitabımın projeleri Bu Github Reposundaki tüm projeler; kaleme almış olduğum "Projelerle Yapay Zekâ ve Bi

Ümit Aksoylu 4 Aug 03, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge

SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec

HumaticsLAB 31 Oct 10, 2022