Must-read Papers on Physics-Informed Neural Networks.

Overview

PINNpapers

Contributed by IDRL lab.

Introduction

Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017. In this repo, we list some representative work on PINNs. Feel free to distribute or use it!

Corrections and suggestions are welcomed.

A script for converting bibtex to the markdown used in this repo is also provided for your convenience.

Software

  1. DeepXDE: A Deep Learning Library for Solving Differential Equations, Lu Lu, Xuhui Meng, Zhiping Mao, George Em Karniadakis, SIAM Review, 2021. [paper][code]
  2. NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework, Oliver Hennigh, Susheela Narasimhan, Mohammad Amin Nabian, Akshay Subramaniam, Kaustubh Tangsali, Zhiwei Fang, Max Rietmann, Wonmin Byeon, Sanjay Choudhry, ICCS, 2021. [paper]
  3. SciANN: A Keras wrapper for scientific computations and physics-informed deep learning using artificial neural networks, Ehsan Haghighat, Ruben Juanes, arXiv preprint arXiv:2005.08803, 2020. [paper][code]
  4. Elvet -- a neural network-based differential equation and variational problem solver, Jack Y. Araz, Juan Carlos Criado, Michael Spannowsky, arXiv:2103.14575 [hep-lat, physics:hep-ph, physics:hep-th, stat], 2021. [paper][code]
  5. TensorDiffEq: Scalable Multi-GPU Forward and Inverse Solvers for Physics Informed Neural Networks, Levi D. McClenny, Mulugeta A. Haile, Ulisses M. Braga-Neto, arXiv:2103.16034 [physics], 2021. [paper][code]
  6. PyDEns: a Python Framework for Solving Differential Equations with Neural Networks, Alex Koryagin, er, Roman Khudorozkov, Sergey Tsimfer, arXiv:1909.11544 [cs, stat], 2019. [paper][code]
  7. NeuroDiffEq: A Python package for solving differential equations with neural networks, Feiyu Chen, David Sondak, Pavlos Protopapas, Marios Mattheakis, Shuheng Liu, Devansh Agarwal, Marco Di Giovanni, Journal of Open Source Software, 2020. [paper][code]
  8. Universal Differential Equations for Scientific Machine Learning, Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar, Dominic Skinner, Ali Ramadhan, Alan Edelman, arXiv:2001.04385 [cs, math, q-bio, stat], 2020. [paper][code]
  9. NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations, Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, N Vinchhi, , Kaushik Balakrishnan, Devesh Upadhyay, Chris Rackauckas, arXiv:2107.09443 [cs], 2021. [paper][code]
  10. IDRLnet: A Physics-Informed Neural Network Library, Wei Peng, Jun Zhang, Weien Zhou, Xiaoyu Zhao, Wen Yao, Xiaoqian Chen, arXiv:2107.04320 [cs, math], 2021. [paper][code]

Papers on PINN Models

  1. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, M. Raissi, P. Perdikaris, G. E. Karniadakis, Journal of Computational Physics, 2019. [paper]
  2. The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, E Weinan, Bing Yu, Communications in Mathematics and Statistics, 2018. [paper]
  3. DGM: A deep learning algorithm for solving partial differential equations, Justin Sirignano, Konstantinos Spiliopoulos, Journal of Computational Physics, 2018. [paper]
  4. SPINN: Sparse, Physics-based, and partially Interpretable Neural Networks for PDEs, Amuthan A. Ramabathiran, Ramach, Prabhu ran, Journal of Computational Physics, 2021. [paper][code]
  5. Deep neural network methods for solving forward and inverse problems of time fractional diffusion equations with conformable derivative, Yinlin Ye, Yajing Li, Hongtao Fan, Xinyi Liu, Hongbing Zhang, arXiv:2108.07490 [cs, math], 2021. [paper]
  6. NH-PINN: Neural homogenization based physics-informed neural network for multiscale problems, Wing Tat Leung, Guang Lin, Zecheng Zhang, arXiv:2108.12942 [cs, math], 2021. [paper][code]

Papers on Parallel PINN

  1. Parallel Physics-Informed Neural Networks via Domain Decomposition, Khemraj Shukla, Ameya D. Jagtap, George Em Karniadakis, arXiv:2104.10013 [cs], 2021. [paper]
  2. Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations, Ben Moseley, Andrew Markham, Tarje Nissen-Meyer, arXiv:2107.07871 [physics], 2021. [paper]
  3. PPINN: Parareal physics-informed neural network for time-dependent PDEs, Xuhui Meng, Zhen Li, Dongkun Zhang, George Em Karniadakis, Computer Methods in Applied Mechanics and Engineering, 2020. [paper]

Papers on PINN Accerleration

  1. Self-adaptive loss balanced Physics-informed neural networks for the incompressible Navier-Stokes equations, Zixue Xiang, Wei Peng, Xiaohu Zheng, Xiaoyu Zhao, Wen Yao, arXiv:2104.06217 [physics], 2021. [paper]
  2. A Dual-Dimer method for training physics-constrained neural networks with minimax architecture, Dehao Liu, Yan Wang, Neural Networks, 2021. [paper]
  3. Adversarial Multi-task Learning Enhanced Physics-informed Neural Networks for Solving Partial Differential Equations, Pongpisit Thanasutives, Masayuki Numao, Ken-ichi Fukui, arXiv:2104.14320 [cs, math], 2021. [paper]
  4. DPM: A Novel Training Method for Physics-Informed Neural Networks in Extrapolation, Jungeun Kim, Kookjin Lee, Dongeun Lee, Sheo Yon Jin, Noseong Park, AAAI, 2021. [paper]

Papers on Model Transfer & Meta-Learning

  1. A physics-aware learning architecture with input transfer networks for predictive modeling, Amir Behjat, Chen Zeng, Rahul Rai, Ion Matei, David Doermann, Souma Chowdhury, Applied Soft Computing, 2020. [paper]
  2. Transfer learning based multi-fidelity physics informed deep neural network, Souvik Chakraborty, Journal of Computational Physics, 2021. [paper]
  3. Transfer learning enhanced physics informed neural network for phase-field modeling of fracture, Somdatta Goswami, Cosmin Anitescu, Souvik Chakraborty, Timon Rabczuk, Theoretical and Applied Fracture Mechanics, 2020. [paper]
  4. Meta-learning PINN loss functions, Apostolos F. Psaros, Kenji Kawaguchi, George Em Karniadakis, arXiv:2107.05544 [cs], 2021. [paper]

Papers on Probabilistic PINNs and Uncertainty Quantification

  1. A physics-aware, probabilistic machine learning framework for coarse-graining high-dimensional systems in the Small Data regime, Constantin Grigo, Phaedon-Stelios Koutsourelakis, Journal of Computational Physics, 2019. [paper]
  2. Adversarial uncertainty quantification in physics-informed neural networks, Yibo Yang, Paris Perdikaris, Journal of Computational Physics, 2019. [paper]
  3. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data, Liu Yang, Xuhui Meng, George Em Karniadakis, Journal of Computational Physics, 2021. [paper]
  4. PID-GAN: A GAN Framework based on a Physics-informed Discriminator for Uncertainty Quantification with Physics, Arka Daw, M. Maruf, Anuj Karpatne, arXiv:2106.02993 [cs, stat], 2021. [paper]
  5. Quantifying Uncertainty in Physics-Informed Variational Autoencoders for Anomaly Detection, Marcus J. Neuer, ESTEP, 2020. [paper]
  6. A Physics-Data-Driven Bayesian Method for Heat Conduction Problems, Xinchao Jiang, Hu Wang, Yu li, arXiv:2109.00996 [cs, math], 2021. [paper][code]
  7. Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks, Yihang Gao, Michael K. Ng, arXiv:2108.13054 [cs, math], 2021. [paper][code]

Papers on Applications

  1. Physics-informed neural networks for high-speed flows, Zhiping Mao, Ameya D. Jagtap, George Em Karniadakis, Computer Methods in Applied Mechanics and Engineering, 2020. [paper]
  2. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data, Luning Sun, Han Gao, Shaowu Pan, Jian-Xun Wang, Computer Methods in Applied Mechanics and Engineering, 2020. [paper]
  3. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations, Maziar Raissi, Alireza Yazdani, George Em Karniadakis, Science, 2020. [paper]
  4. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations, Xiaowei Jin, Shengze Cai, Hui Li, George Em Karniadakis, Journal of Computational Physics, 2021. [paper]
  5. A High-Efficient Hybrid Physics-Informed Neural Networks Based on Convolutional Neural Network, Zhiwei Fang, IEEE Transactions on Neural Networks and Learning Systems, 2021. [paper]
  6. A Study on a Feedforward Neural Network to Solve Partial Differential Equations in Hyperbolic-Transport Problems, Eduardo Abreu, Joao B. Florindo, ICCS, 2021. [paper]
  7. A Physics Informed Neural Network Approach to Solution and Identification of Biharmonic Equations of Elasticity, Mohammad Vahab, Ehsan Haghighat, Maryam Khaleghi, Nasser Khalili, arXiv:2108.07243 [cs], 2021. [paper]
  8. Prediction of porous media fluid flow using physics informed neural networks, Muhammad M. Almajid, Moataz O. Abu-Alsaud, Journal of Petroleum Science and Engineering, 2021. [paper]
  9. Investigating a New Approach to Quasinormal Modes: Physics-Informed Neural Networks, Anele M. Ncube, Gerhard E. Harmsen, Alan S. Cornell, arXiv:2108.05867 [gr-qc], 2021. [paper]
  10. Towards neural Earth system modelling by integrating artificial intelligence in Earth system science, Christopher Irrgang, Niklas Boers, Maike Sonnewald, Elizabeth A. Barnes, Christopher Kadow, Joanna Staneva, Jan Saynisch-Wagner, Nature Machine Intelligence, 2021. [paper]
  11. Physics-informed Neural Network for Nonlinear Dynamics in Fiber Optics, Xiaotian Jiang, Danshi Wang, Qirui Fan, Min Zhang, Chao Lu, Alan Pak Tao Lau, arXiv:2109.00526 [physics], 2021. [paper][code]

Papers on PINN Analysis

  1. Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs, Siddhartha Mishra, Roberto Molinaro, IMA Journal of Numerical Analysis, 2021. [paper]
  2. Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs, Tim De Ryck, Siddhartha Mishra, arXiv:2106.14473 [cs, math], 2021. [paper]
  3. Error Analysis of Deep Ritz Methods for Elliptic Equations, Yuling Jiao, Yanming Lai, Yisu Luo, Yang Wang, Yunfei Yang, arXiv:2107.14478 [cs, math], 2021. [paper]
Owner
IDRL
Intelligent Design and Robust Learning Laboratory
IDRL
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
CNN Based Meta-Learning for Noisy Image Classification and Template Matching

CNN Based Meta-Learning for Noisy Image Classification and Template Matching Introduction This master thesis used a few-shot meta learning approach to

Kumar Manas 2 Dec 09, 2021
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation

This is a GUI interface which can process forest fire detection, smoke detection and fire segmentation. Yolov5 is used to detect fire and smoke and unet is used to segment fire.

7 Jan 08, 2023
Compositional Sketch Search

Compositional Sketch Search Official repository for ICIP 2021 Paper: Compositional Sketch Search Requirements Install and activate conda environment c

Alexander Black 8 Sep 06, 2021
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
This repository provides code for "On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness".

On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness This repository provides the code for the paper On Interaction B

Meta Research 33 Dec 08, 2022
Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021)

Mix3D: Out-of-Context Data Augmentation for 3D Scenes (3DV 2021) Alexey Nekrasov*, Jonas Schult*, Or Litany, Bastian Leibe, Francis Engelmann Mix3D is

Alexey Nekrasov 189 Dec 26, 2022
Multi-tool reverse engineering collaboration solution.

CollaRE v0.3 Intorduction CollareRE is a tool for collaborative reverse engineering that aims to allow teams that do need to use more then one tool du

105 Nov 27, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
End-to-End Referring Video Object Segmentation with Multimodal Transformers

End-to-End Referring Video Object Segmentation with Multimodal Transformers This repo contains the official implementation of the paper: End-to-End Re

608 Dec 30, 2022
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Spatial Action Maps for Mobile Manipulation (RSS 2020)

spatial-action-maps Update: Please see our new spatial-intention-maps repository, which extends this work to multi-agent settings. It contains many ne

Jimmy Wu 27 Nov 30, 2022
Transfer style api - An API to use with Tranfer Style App, where you can use two image and transfer the style

Transfer Style API It's an API to use with Tranfer Style App, where you can use

Brian Alejandro 1 Feb 13, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022