Must-read Papers on Physics-Informed Neural Networks.

Overview

PINNpapers

Contributed by IDRL lab.

Introduction

Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017. In this repo, we list some representative work on PINNs. Feel free to distribute or use it!

Corrections and suggestions are welcomed.

A script for converting bibtex to the markdown used in this repo is also provided for your convenience.

Software

  1. DeepXDE: A Deep Learning Library for Solving Differential Equations, Lu Lu, Xuhui Meng, Zhiping Mao, George Em Karniadakis, SIAM Review, 2021. [paper][code]
  2. NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework, Oliver Hennigh, Susheela Narasimhan, Mohammad Amin Nabian, Akshay Subramaniam, Kaustubh Tangsali, Zhiwei Fang, Max Rietmann, Wonmin Byeon, Sanjay Choudhry, ICCS, 2021. [paper]
  3. SciANN: A Keras wrapper for scientific computations and physics-informed deep learning using artificial neural networks, Ehsan Haghighat, Ruben Juanes, arXiv preprint arXiv:2005.08803, 2020. [paper][code]
  4. Elvet -- a neural network-based differential equation and variational problem solver, Jack Y. Araz, Juan Carlos Criado, Michael Spannowsky, arXiv:2103.14575 [hep-lat, physics:hep-ph, physics:hep-th, stat], 2021. [paper][code]
  5. TensorDiffEq: Scalable Multi-GPU Forward and Inverse Solvers for Physics Informed Neural Networks, Levi D. McClenny, Mulugeta A. Haile, Ulisses M. Braga-Neto, arXiv:2103.16034 [physics], 2021. [paper][code]
  6. PyDEns: a Python Framework for Solving Differential Equations with Neural Networks, Alex Koryagin, er, Roman Khudorozkov, Sergey Tsimfer, arXiv:1909.11544 [cs, stat], 2019. [paper][code]
  7. NeuroDiffEq: A Python package for solving differential equations with neural networks, Feiyu Chen, David Sondak, Pavlos Protopapas, Marios Mattheakis, Shuheng Liu, Devansh Agarwal, Marco Di Giovanni, Journal of Open Source Software, 2020. [paper][code]
  8. Universal Differential Equations for Scientific Machine Learning, Christopher Rackauckas, Yingbo Ma, Julius Martensen, Collin Warner, Kirill Zubov, Rohit Supekar, Dominic Skinner, Ali Ramadhan, Alan Edelman, arXiv:2001.04385 [cs, math, q-bio, stat], 2020. [paper][code]
  9. NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations, Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, N Vinchhi, , Kaushik Balakrishnan, Devesh Upadhyay, Chris Rackauckas, arXiv:2107.09443 [cs], 2021. [paper][code]
  10. IDRLnet: A Physics-Informed Neural Network Library, Wei Peng, Jun Zhang, Weien Zhou, Xiaoyu Zhao, Wen Yao, Xiaoqian Chen, arXiv:2107.04320 [cs, math], 2021. [paper][code]

Papers on PINN Models

  1. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, M. Raissi, P. Perdikaris, G. E. Karniadakis, Journal of Computational Physics, 2019. [paper]
  2. The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, E Weinan, Bing Yu, Communications in Mathematics and Statistics, 2018. [paper]
  3. DGM: A deep learning algorithm for solving partial differential equations, Justin Sirignano, Konstantinos Spiliopoulos, Journal of Computational Physics, 2018. [paper]
  4. SPINN: Sparse, Physics-based, and partially Interpretable Neural Networks for PDEs, Amuthan A. Ramabathiran, Ramach, Prabhu ran, Journal of Computational Physics, 2021. [paper][code]
  5. Deep neural network methods for solving forward and inverse problems of time fractional diffusion equations with conformable derivative, Yinlin Ye, Yajing Li, Hongtao Fan, Xinyi Liu, Hongbing Zhang, arXiv:2108.07490 [cs, math], 2021. [paper]
  6. NH-PINN: Neural homogenization based physics-informed neural network for multiscale problems, Wing Tat Leung, Guang Lin, Zecheng Zhang, arXiv:2108.12942 [cs, math], 2021. [paper][code]

Papers on Parallel PINN

  1. Parallel Physics-Informed Neural Networks via Domain Decomposition, Khemraj Shukla, Ameya D. Jagtap, George Em Karniadakis, arXiv:2104.10013 [cs], 2021. [paper]
  2. Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations, Ben Moseley, Andrew Markham, Tarje Nissen-Meyer, arXiv:2107.07871 [physics], 2021. [paper]
  3. PPINN: Parareal physics-informed neural network for time-dependent PDEs, Xuhui Meng, Zhen Li, Dongkun Zhang, George Em Karniadakis, Computer Methods in Applied Mechanics and Engineering, 2020. [paper]

Papers on PINN Accerleration

  1. Self-adaptive loss balanced Physics-informed neural networks for the incompressible Navier-Stokes equations, Zixue Xiang, Wei Peng, Xiaohu Zheng, Xiaoyu Zhao, Wen Yao, arXiv:2104.06217 [physics], 2021. [paper]
  2. A Dual-Dimer method for training physics-constrained neural networks with minimax architecture, Dehao Liu, Yan Wang, Neural Networks, 2021. [paper]
  3. Adversarial Multi-task Learning Enhanced Physics-informed Neural Networks for Solving Partial Differential Equations, Pongpisit Thanasutives, Masayuki Numao, Ken-ichi Fukui, arXiv:2104.14320 [cs, math], 2021. [paper]
  4. DPM: A Novel Training Method for Physics-Informed Neural Networks in Extrapolation, Jungeun Kim, Kookjin Lee, Dongeun Lee, Sheo Yon Jin, Noseong Park, AAAI, 2021. [paper]

Papers on Model Transfer & Meta-Learning

  1. A physics-aware learning architecture with input transfer networks for predictive modeling, Amir Behjat, Chen Zeng, Rahul Rai, Ion Matei, David Doermann, Souma Chowdhury, Applied Soft Computing, 2020. [paper]
  2. Transfer learning based multi-fidelity physics informed deep neural network, Souvik Chakraborty, Journal of Computational Physics, 2021. [paper]
  3. Transfer learning enhanced physics informed neural network for phase-field modeling of fracture, Somdatta Goswami, Cosmin Anitescu, Souvik Chakraborty, Timon Rabczuk, Theoretical and Applied Fracture Mechanics, 2020. [paper]
  4. Meta-learning PINN loss functions, Apostolos F. Psaros, Kenji Kawaguchi, George Em Karniadakis, arXiv:2107.05544 [cs], 2021. [paper]

Papers on Probabilistic PINNs and Uncertainty Quantification

  1. A physics-aware, probabilistic machine learning framework for coarse-graining high-dimensional systems in the Small Data regime, Constantin Grigo, Phaedon-Stelios Koutsourelakis, Journal of Computational Physics, 2019. [paper]
  2. Adversarial uncertainty quantification in physics-informed neural networks, Yibo Yang, Paris Perdikaris, Journal of Computational Physics, 2019. [paper]
  3. B-PINNs: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data, Liu Yang, Xuhui Meng, George Em Karniadakis, Journal of Computational Physics, 2021. [paper]
  4. PID-GAN: A GAN Framework based on a Physics-informed Discriminator for Uncertainty Quantification with Physics, Arka Daw, M. Maruf, Anuj Karpatne, arXiv:2106.02993 [cs, stat], 2021. [paper]
  5. Quantifying Uncertainty in Physics-Informed Variational Autoencoders for Anomaly Detection, Marcus J. Neuer, ESTEP, 2020. [paper]
  6. A Physics-Data-Driven Bayesian Method for Heat Conduction Problems, Xinchao Jiang, Hu Wang, Yu li, arXiv:2109.00996 [cs, math], 2021. [paper][code]
  7. Wasserstein Generative Adversarial Uncertainty Quantification in Physics-Informed Neural Networks, Yihang Gao, Michael K. Ng, arXiv:2108.13054 [cs, math], 2021. [paper][code]

Papers on Applications

  1. Physics-informed neural networks for high-speed flows, Zhiping Mao, Ameya D. Jagtap, George Em Karniadakis, Computer Methods in Applied Mechanics and Engineering, 2020. [paper]
  2. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data, Luning Sun, Han Gao, Shaowu Pan, Jian-Xun Wang, Computer Methods in Applied Mechanics and Engineering, 2020. [paper]
  3. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations, Maziar Raissi, Alireza Yazdani, George Em Karniadakis, Science, 2020. [paper]
  4. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations, Xiaowei Jin, Shengze Cai, Hui Li, George Em Karniadakis, Journal of Computational Physics, 2021. [paper]
  5. A High-Efficient Hybrid Physics-Informed Neural Networks Based on Convolutional Neural Network, Zhiwei Fang, IEEE Transactions on Neural Networks and Learning Systems, 2021. [paper]
  6. A Study on a Feedforward Neural Network to Solve Partial Differential Equations in Hyperbolic-Transport Problems, Eduardo Abreu, Joao B. Florindo, ICCS, 2021. [paper]
  7. A Physics Informed Neural Network Approach to Solution and Identification of Biharmonic Equations of Elasticity, Mohammad Vahab, Ehsan Haghighat, Maryam Khaleghi, Nasser Khalili, arXiv:2108.07243 [cs], 2021. [paper]
  8. Prediction of porous media fluid flow using physics informed neural networks, Muhammad M. Almajid, Moataz O. Abu-Alsaud, Journal of Petroleum Science and Engineering, 2021. [paper]
  9. Investigating a New Approach to Quasinormal Modes: Physics-Informed Neural Networks, Anele M. Ncube, Gerhard E. Harmsen, Alan S. Cornell, arXiv:2108.05867 [gr-qc], 2021. [paper]
  10. Towards neural Earth system modelling by integrating artificial intelligence in Earth system science, Christopher Irrgang, Niklas Boers, Maike Sonnewald, Elizabeth A. Barnes, Christopher Kadow, Joanna Staneva, Jan Saynisch-Wagner, Nature Machine Intelligence, 2021. [paper]
  11. Physics-informed Neural Network for Nonlinear Dynamics in Fiber Optics, Xiaotian Jiang, Danshi Wang, Qirui Fan, Min Zhang, Chao Lu, Alan Pak Tao Lau, arXiv:2109.00526 [physics], 2021. [paper][code]

Papers on PINN Analysis

  1. Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for PDEs, Siddhartha Mishra, Roberto Molinaro, IMA Journal of Numerical Analysis, 2021. [paper]
  2. Error analysis for physics informed neural networks (PINNs) approximating Kolmogorov PDEs, Tim De Ryck, Siddhartha Mishra, arXiv:2106.14473 [cs, math], 2021. [paper]
  3. Error Analysis of Deep Ritz Methods for Elliptic Equations, Yuling Jiao, Yanming Lai, Yisu Luo, Yang Wang, Yunfei Yang, arXiv:2107.14478 [cs, math], 2021. [paper]
Owner
IDRL
Intelligent Design and Robust Learning Laboratory
IDRL
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
A simplified framework and utilities for PyTorch

Here is Poutyne. Poutyne is a simplified framework for PyTorch and handles much of the boilerplating code needed to train neural networks. Use Poutyne

GRAAL/GRAIL 534 Dec 17, 2022
This is an official implementation for "AS-MLP: An Axial Shifted MLP Architecture for Vision".

AS-MLP architecture for Image Classification Model Zoo Image Classification on ImageNet-1K Network Resolution Top-1 (%) Params FLOPs Throughput (image

SVIP Lab 106 Dec 12, 2022
The toolkit to generate auto labeled datasets

Ozeu Ozeu is the toolkit to autolabal dataset for instance segmentation. You can generate datasets labaled with segmentation mask and bounding box fro

Xiong Jie 28 Mar 28, 2022
Code for the paper "Training GANs with Stronger Augmentations via Contrastive Discriminator" (ICLR 2021)

Training GANs with Stronger Augmentations via Contrastive Discriminator (ICLR 2021) This repository contains the code for reproducing the paper: Train

Jongheon Jeong 174 Dec 29, 2022
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

Christoph Reich 10 Jan 02, 2023
Code for our paper "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021

SimCLS Code for our paper: "SimCLS: A Simple Framework for Contrastive Learning of Abstractive Summarization", ACL 2021 1. How to Install Requirements

Yixin Liu 150 Dec 12, 2022
Package for working with hypernetworks in PyTorch.

Package for working with hypernetworks in PyTorch.

Christian Henning 71 Jan 05, 2023
SSD: Single Shot MultiBox Detector pytorch implementation focusing on simplicity

SSD: Single Shot MultiBox Detector Introduction Here is my pytorch implementation of 2 models: SSD-Resnet50 and SSDLite-MobilenetV2.

Viet Nguyen 149 Jan 07, 2023
Compact Bidirectional Transformer for Image Captioning

Compact Bidirectional Transformer for Image Captioning Requirements Python 3.8 Pytorch 1.6 lmdb h5py tensorboardX Prepare Data Please use git clone --

YE Zhou 19 Dec 12, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

code for "AttentiveNAS Improving Neural Architecture Search via Attentive Sampling"

Facebook Research 94 Oct 26, 2022
PyTorch code for 'Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning'

Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning This repository is for EMSRDPN introduced in the foll

7 Feb 10, 2022
Global Rhythm Style Transfer Without Text Transcriptions

Global Prosody Style Transfer Without Text Transcriptions This repository provides a PyTorch implementation of AutoPST, which enables unsupervised glo

Kaizhi Qian 193 Dec 30, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Transformer in Computer Vision

Transformer-in-Vision A paper list of some recent Transformer-based CV works. If you find some ignored papers, please open issues or pull requests. **

506 Dec 26, 2022