Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

Overview

AMRBART

An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv).

PWC

PWC

PWC

PWC

Requirements

  • python 3.8
  • pytorch 1.8
  • transformers 4.8.2
  • pytorch-lightning 1.5.0
  • Tesla V100 or A100

We recommend to use conda to manage virtual environments:

conda env update --name <env> --file requirements.yml

We also provide a docker image here.

Data Processing

You may download the AMR corpora at LDC.

We follow Spring to preprocess AMR graphs:

# 1. install spring 
cd spring && pip install -e .
# 2. processing data
bash run-preprocess.sh

Pre-training

bash run-posttrain-bart-textinf-joint-denoising-6task-large-unified-V100.sh /path/to/BART/

Fine-tuning

For AMR Parsing, run

bash finetune_AMRbart_amrparsing.sh /path/to/pre-trained/AMRBART/ gpu_id

For AMR-to-text Generation, run

bash finetune_AMRbart_amr2text.sh /path/to/pre-trained/AMRBART/ gpu_id

Evaluation

For AMR Parsing, run

bash eval_AMRbart_amrparsing.sh /path/to/fine-tuned/AMRBART/ gpu_id

For AMR-to-text Generation, run

bash eval_AMRbart_amr2text.sh /path/to/fine-tuned/AMRBART/ gpu_id

Inference on your own data

If you want to run our code on your own data, try to transform your data into the format here, then run

For AMR Parsing, run

bash inference_amr.sh /path/to/fine-tuned/AMRBART/ gpu_id

For AMR-to-text Generation, run

bash inference_text.sh /path/to/fine-tuned/AMRBART/ gpu_id

Pre-trained Models

Pre-trained AMRBART

Setting Params checkpoint
AMRBART-base 142M model
AMRBART-large 409M model

Fine-tuned models on AMR-to-Text Generation

Setting BLEU(tok) BLEU(detok) checkpoint output
AMRBART-large (AMR2.0) 49.8 45.7 model output
AMRBART-large (AMR3.0) 49.2 45.0 model output

To get the tokenized bleu score, you need to use the scorer we provide here. We use this script in order to ensure comparability with previous approaches.

Fine-tuned models on AMR Parsing

Setting Smatch checkpoint output
AMRBART-large (AMR2.0) 85.4 model output
AMRBART-large (AMR3.0) 84.2 model output

Todo

  • clean code

References

@inproceedings{bai-etal-2022-graph,
    title = "Graph Pre-training for {AMR} Parsing and Generation",
    author = "Bai, Xuefeng  and
      Chen, Yulong and
      Zhang, Yue",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = may,
    year = "2022",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "todo",
    doi = "todo",
    pages = "todo"
}
Owner
xfbai
Actions speak louder than words
xfbai
190 Jan 03, 2023
Outlier Exposure with Confidence Control for Out-of-Distribution Detection

OOD-detection-using-OECC This repository contains the essential code for the paper Outlier Exposure with Confidence Control for Out-of-Distribution De

Nazim Shaikh 64 Nov 02, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Highway networks implemented in PyTorch.

PyTorch Highway Networks Highway networks implemented in PyTorch. Just the MNIST example from PyTorch hacked to work with Highway layers. Todo Make th

Conner Vercellino 56 Dec 14, 2022
Conditional Generative Adversarial Networks (CGAN) for Mobility Data Fusion

This code implements the paper, Kim et al. (2021). Imputing Qualitative Attributes for Trip Chains Extracted from Smart Card Data Using a Conditional Generative Adversarial Network. Transportation Re

Eui-Jin Kim 2 Feb 03, 2022
Bio-OFC gym implementation and Gym-Fly environment

Bio-OFC gym implementation and Gym-Fly environment This repository includes the gym compatible implementation of the Bio-OFC algorithm from the paper

Siavash Golkar 1 Nov 16, 2021
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
Lightweight Face Image Quality Assessment

LightQNet This is a demo code of training and testing [LightQNet] using Tensorflow. Uncertainty Losses: IDQ loss PCNet loss Uncertainty Networks: Mobi

Kaen 5 Nov 18, 2022
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
PyTorch implementation of the ACL, 2021 paper Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks.

Parameter-efficient Multi-task Fine-tuning for Transformers via Shared Hypernetworks This repo contains the PyTorch implementation of the ACL, 2021 pa

Rabeeh Karimi Mahabadi 98 Dec 28, 2022
Classifying audio using Wavelet transform and deep learning

Audio Classification using Wavelet Transform and Deep Learning A step-by-step tutorial to classify audio signals using continuous wavelet transform (C

Aditya Dutt 17 Nov 29, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
Code for Learning to Segment The Tail (LST)

Learning to Segment the Tail [arXiv] In this repository, we release code for Learning to Segment The Tail (LST). The code is directly modified from th

47 Nov 07, 2022
Multi-Stage Episodic Control for Strategic Exploration in Text Games

XTX: eXploit - Then - eXplore Requirements First clone this repo using git clone https://github.com/princeton-nlp/XTX.git Please create two conda envi

Princeton Natural Language Processing 9 May 24, 2022
MacroTools provides a library of tools for working with Julia code and expressions.

MacroTools.jl MacroTools provides a library of tools for working with Julia code and expressions. This includes a powerful template-matching system an

FluxML 278 Dec 11, 2022
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022
A curated list of the latest breakthroughs in AI (in 2021) by release date with a clear video explanation, link to a more in-depth article, and code.

2021: A Year Full of Amazing AI papers- A Review 📌 A curated list of the latest breakthroughs in AI by release date with a clear video explanation, l

Louis-François Bouchard 2.9k Dec 31, 2022