BlueFog Tutorials

Overview

BlueFog Tutorials

License

Welcome to the BlueFog tutorials!

In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks serve two purposes:

  • Help readers understand the basic concepts and theories of the decentralized optimization.
  • Help readers understand how to implement decentralized algorithms with the BlueFog library.

Contents

1 Preliminary

Learn how to write your first "hello world" program over the real multi-CPU system with BlueFog.

2 Average Consensus Algorithm

Learn how to achieve the globally averaged consensus among nodes in a decentralized manner.

3 Decentralized Gradient Descent

Learn how to solve a general distributed (possibly stochastic) optimization problem in a decentralized manner.

4 Decentralized Gradient Descent with Bias-Correction

Learn how to accelerate your decentralized (possibly stochastic) optimization algorithms with various bias-correction techniques.

5 Decentralized Optimization over directed and time-varying networks

Learn how to solve distributed optimization in a decentralized manner if the connected topology is directed or time-varying.

6 Asynchronous Decentralized Optimization

Learn how to solve a general distributed optimization problem with asynchronous decentralized algorithms.

7 Decentralized Deep Learning

Learn how to train a deep neural network with decentralized optimization algorithms.

Call for Contributions

This tutorial only contains the very basic concepts, algorithms, theories, and implementations for decentralized optimization. It misses many important recent progress in the algorithm development and theory in the decentralized optimization community. We hope you will consider using BlueFog in the experiment of your new decentralized algorithm and summarize your ideas into a Jupyter notebook tutorial.

About BlueFog Team

The BlueFog Team involves several researchers and engineers that target to make decentralized algorithms practical for large-scale optimization and deep learning. We hope to bridge the gap between the theoretical progress of decentralized algorithms in the academia and the real implementation in the industry. We hope more researchers and engineers can join us to contribute to the community of decentralized optimization.

Other Resources:

Faster Learning over Networks and BlueFog, BlueFog Team, invited talk at MLA, 2020 [slides]

Parallel, Distributed, and Decentralized optimization methods, Wotao Yin, Tutorial in ECOM2021, 2021 [Materials]

Citation

Feel free to share the BlueFog repo and this tutorial to anyone that has an interest. If you use BlueFog, please cite it as follows:

@software{bluefog2021_4616052,
  author       = {BlueFog Team},
  title        = {BlueFog: Make Decentralized Algorithms Practical For Optimization and Deep Learning},
  month        = Mar.,
  year         = 2021,
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.4616052},
  url          = {https://doi.org/10.5281/zenodo.4616052}
}
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
Official Implementation for Fast Training of Neural Lumigraph Representations using Meta Learning.

Fast Training of Neural Lumigraph Representations using Meta Learning Project Page | Paper | Data Alexander W. Bergman, Petr Kellnhofer, Gordon Wetzst

Alex 39 Oct 08, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
Cowsay - A rewrite of cowsay in python

Python Cowsay A rewrite of cowsay in python. Allows for parsing of existing .cow

James Ansley 3 Jun 27, 2022
PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

PyTorch implementation of SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Thalles Silva 1.7k Dec 28, 2022
A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Michael.CV 5 Nov 03, 2022
SAPIEN Manipulation Skill Benchmark

ManiSkill Benchmark SAPIEN Manipulation Skill Benchmark (abbreviated as ManiSkill, pronounced as "Many Skill") is a large-scale learning-from-demonstr

Hao Su's Lab, UCSD 107 Jan 08, 2023
Deep Learning to Create StepMania SM FIles

StepCOVNet Running Audio to SM File Generator Currently only produces .txt files. Use SMDataTools to convert .txt to .sm python stepmania_note_generat

Chimezie Iwuanyanwu 8 Jan 08, 2023
An unofficial styleguide and best practices summary for PyTorch

A PyTorch Tools, best practices & Styleguide This is not an official style guide for PyTorch. This document summarizes best practices from more than a

IgorSusmelj 1.5k Jan 05, 2023
An ever-growing playground of notebooks showcasing CLIP's impressive zero-shot capabilities.

Playground for CLIP-like models Demo Colab Link GradCAM Visualization Naive Zero-shot Detection Smarter Zero-shot Detection Captcha Solver Changelog 2

Kevin Zakka 101 Dec 30, 2022
Reverse engineer your pytorch vision models, in style

🔍 Rover Reverse engineer your CNNs, in style Rover will help you break down your CNN and visualize the features from within the model. No need to wri

Mayukh Deb 32 Sep 24, 2022
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
Visual Memorability for Robotic Interestingness via Unsupervised Online Learning (ECCV 2020 Oral and TRO)

Visual Interestingness Refer to the project description for more details. This code based on the following paper. Chen Wang, Yuheng Qiu, Wenshan Wang,

Chen Wang 36 Sep 08, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
The Instructed Glacier Model (IGM)

The Instructed Glacier Model (IGM) Overview The Instructed Glacier Model (IGM) simulates the ice dynamics, surface mass balance, and its coupling thro

27 Dec 16, 2022
《Dual-Resolution Correspondence Network》(NeurIPS 2020)

Dual-Resolution Correspondence Network Dual-Resolution Correspondence Network, NeurIPS 2020 Dependency All dependencies are included in asset/dualrcne

Active Vision Laboratory 45 Nov 21, 2022