CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

Overview

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

  In order to facilitate the research of multi-modal sensor fusion for human action recognition, this paper provides a multi-modal human action dataset using Kinect depth camera and multile wearable sensors, which is called Changzhou University multi-modal human action dataset (CZU-MHAD). Our dataset contains more wearable sensors, which aims to obtain the position data of human skeleton joints, as well as 3-axis acceleration and 3-axis angular velocity data of corresponding joints. Our dataset provides time synchronous depth video, skeleton joint position, 3-axis acceleration and 3-axis angular velocity data to describe a complete human action.

1. Sensors

  The CZU-MHAD uses 1 Microsoft Kinect V2 and 10 wearable sensors MPU9250. These two kinds of sensors are widely used, which have the characteristics of low power consumption, low cost and simple operation. In addition, it does not require too much computing power to process the data collected by the two kind sensors in real time.

1.1 Kinect v2

  The above picture is the Microsoft Kinect V2, which can collect both color and depth images at a sampling frequency of 30 frames per second. Kinect SDK is a software package provided by Microsoft, which can be used to track 25 skeleton joint points and their 3D spatial positions. You can download the Kinect SDK in https://www.microsoft.com/en-us/download/details.aspx?id=44561.

  The above image shows 25 skeleton joint points of the human body that Kinect V2 can track.

1.2 MPU9250

  The MPU9250 can capture 3-axis acceleration, 3-axis angular velocity and 3-axis magnetic intensity.

  • The measurement range of MPU9250:
    • the measurement range of accelerometer is ±16g;
    • the measurement range of angular velocity of the gyroscope is ±2000 degrees/second.

  CZU-MHAD uses Raspberry PI to interact with MPU9250 through the integrated circuit bus (IIC) interface, realizing the functions of reading, saving and uploading MPU9250 sensor data to the server.The connection between Raspberry PI and MPU9250 is shown in picture.

  You can visit https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up to learn more about Raspberry PI.

2. Data Acquisition System Architecture

  This section introduces the data acquisition system of CZU-MHAD dataset. CZU-MHAD uses Kinect V2 sensor to collect depth image and joint position data, and uses MPU9250 sensor to collect 3-axis acceleration data and 3-axis angular velocity data. In order to collect the 3-axis acceleration data and the 3-axis angular velocity data of the whole body, a motion data acquisition system including 10 MPU9250 sensors is built-in this paper. The sampling system architecture is shown in following picture.

  The MPU9250 sensor is controlled by Raspberry PI, Kinect V2 is controlled by a notebook computer, and time synchronization with a NTP server is carried out every time data is collected. After considering the sampling scheme of MHAD and UTD-MHAD, the position of wearable sensors is determined as shown in the following picture.

  The points marked in red in the figure are the positions of inertial sensors, the left in the figure is the left side of the human body, and the right in the figure is the right side of the human body.

3. Information for "CZU-MHAD" dataset.

  The CZU-MHAD dataset contains 22 actions performed by 5 subjects (5 males). Each subject repeated each action >8 times. The CZU-MHAD dataset contains a total of >880 samples. The 22 actions performed are listed in Table. It can be seen that CZU-MHAD includes common gestures (such as Draw fork, Draw circle),daily activities (such as Sur Place, Clap, Bend down), and training actions (such as Left body turning movement, Left lateral movement).

Describe different actions in English:

ID Action name ID Action name ID Action name ID Action name
1 Right high wave 7 Draw fork with right hand 13 Right foot kick side 19 Left body turning movement
2 Left high wave 8 Draw fork with left hand 14 Left foot kick side 20 Right body turning movement
3 Right horizontal wave 9 Draw circle with right hand 15 Clap 21 Left lateral movement
4 Left horizontal wave 10 Draw circle with left hand 16 Bend down 22 Right lateral movement
5 Hammer with right hand 11 Right foot kick foward 17 Wave up and down
6 Grasp with right hand 12 Left foot kick foward 18 Sur Place

Describe different actions in Chinese::

ID Action name ID Action name ID Action name ID Action name
1 右高挥手 7 右手画× 13 右脚侧踢 19 左体转
2 左高挥手 8 左手画× 14 左脚侧踢 20 右体转
3 右水平挥手 9 右手画○ 15 拍手 21 左体侧
4 左水平挥手 10 左手画○ 16 弯腰 22 右体侧
5 锤(右手) 11 右脚前踢 17 上下挥手
6 抓(右手) 12 左脚前踢 18 原地踏步

4. How to download the dataset

   We offer one way to download our CZU-MHAD dataset:

  1. BaiduDisk(百度网盘)

    (Link) 链接:https://pan.baidu.com/s/1SBy0D2f1ZoX_mDyd3YEp2Q
    (Code) 提取码:qsq1

  In the CZU-MHAD, you will see three subfolders:

  • depth_mat

       The depth_mat contains the depth images captured by Kinect V2. In this folder, each file represents an action sample. Each file is named by the subject's name, the category label of the action and the time of each action of each subject. Take cyy_a1_t1.mat as an example, cyy is the subject's name, a1 is the name of the action, t1 stands the first time to perform this action. How to read data is shown in our sample code.

  • sensors_mat

       The sensors_mat contains the data of 3-axis acceleration and 3-axis angular velocity captured by MPU9250. In this folder, each file represents an action sample. Each file is named by the subject's name, the category label of the action and the time of each action of each subject. Take cyy_a1_t1.mat as an example, cyy is the subject's name, a1 is the name of the action, t1 stands the first time to perform this action. How to read data is shown in our sample code.

  • skeleton_mat

       The skeleton_mat contains the position data of skeleton joint points captured by Kinect V2. In this folder, each file represents an action sample. Each file is named by the subject's name, the category label of the action and the time of each action of each subject. Take cyy_a1_t1.mat as an example, cyy is the subject's name, a1 is the name of the action, t1 stands the first time to perform this action. How to read data is shown in our sample code.

5. Sample codes

  1. BaiduDisk(百度网盘)

    (Link) 链接:https://pan.baidu.com/s/1bWq7ypygjTffkor1GAExMQ

    (Code) 提取码:limf

6. Citation

To use our dataset, please refer to the following paper:

  • Mo Yujian, Hou Zhenjie, Chang Xingzhi, Liang Jiuzhen, Chen Chen, Huan Juan. Structural feature representation and fusion of behavior recognition oriented human spatial cooperative motion[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,(12):2495-2505.

7. Mailing List

  If you are interested to recieve news, updates, and future events about this dataset, please email me.

#. Thanks(致谢)

  1. Cui Yaoyao(崔瑶瑶)
  2. Chao Xin(巢新)
  3. Qin Yinhua(秦银华)
  4. Zhang Yuheng(张宇恒)
  5. Mo Yujian(莫宇剑)

#. Gao Liang(高亮)

#. Shi Yuhang(石宇航)

  The subjects marked with '#' also participated in our data collection process. However, due to the unstable power supply and abnormal heat dissipation of Raspberry PI, their behavior data is abnormal. Therefore, we do not provide their data.

You might also like...
Official PyTorch implementation of
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

 COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

Releases(skeleton)
Owner
yujmo
帅气,阳光,灿烂,美丽,大方
yujmo
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023
FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction

FLAVR is a fast, flow-free frame interpolation method capable of single shot multi-frame prediction. It uses a customized encoder decoder architecture with spatio-temporal convolutions and channel ga

Tarun K 280 Dec 23, 2022
PyTorch code for EMNLP 2021 paper: Don't be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System

Don’t be Contradicted with Anything!CI-ToD: Towards Benchmarking Consistency for Task-oriented Dialogue System This repository contains the PyTorch im

Libo Qin 25 Sep 06, 2022
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
Extending JAX with custom C++ and CUDA code

Extending JAX with custom C++ and CUDA code This repository is meant as a tutorial demonstrating the infrastructure required to provide custom ops in

Dan Foreman-Mackey 237 Dec 23, 2022
MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieva

Introduction This is the source code of our TCSVT 2021 paper "MARS: Learning Modality-Agnostic Representation for Scalable Cross-media Retrieval". Ple

7 Aug 24, 2022
Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow.

custom-cnn-fashion-mnist Creating a custom CNN hypertunned architeture for the Fashion MNIST dataset with Python, Keras and Tensorflow. The following

Danielle Almeida 1 Mar 05, 2022
Few-Shot-Intent-Detection includes popular challenging intent detection datasets with/without OOS queries and state-of-the-art baselines and results.

Few-Shot-Intent-Detection Few-Shot-Intent-Detection is a repository designed for few-shot intent detection with/without Out-of-Scope (OOS) intents. It

Jian-Guo Zhang 73 Dec 26, 2022
This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detection', CVPR 2019.

Code-and-Dataset-for-CapSal This project provides the code and datasets for 'CapSal: Leveraging Captioning to Boost Semantics for Salient Object Detec

lu zhang 48 Aug 19, 2022
Virtual hand gesture mouse using a webcam

NonMouse 日本語のREADMEはこちら This is an application that allows you to use your hand itself as a mouse. The program uses a web camera to recognize your han

Yuki Takeyama 55 Jan 01, 2023
Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

Organseg dags - The repository contains the codebase for multi-organ segmentation with directed acyclic graphs (DAGs) in CT.

yzf 1 Jun 12, 2022
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
face property detection pytorch

This is the face property train code of project face-detection-project

i am x 2 Oct 18, 2021
SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolutional Networks

SalFBNet This repository includes Pytorch implementation for the following paper: SalFBNet: Learning Pseudo-Saliency Distribution via Feedback Convolu

12 Aug 12, 2022
Python binding for Khiva library.

Khiva-Python Build Documentation Build Linux and Mac OS Build Windows Code Coverage README This is the Khiva Python binding, it allows the usage of Kh

Shapelets 46 Oct 16, 2022
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022