CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

Overview

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

  In order to facilitate the research of multi-modal sensor fusion for human action recognition, this paper provides a multi-modal human action dataset using Kinect depth camera and multile wearable sensors, which is called Changzhou University multi-modal human action dataset (CZU-MHAD). Our dataset contains more wearable sensors, which aims to obtain the position data of human skeleton joints, as well as 3-axis acceleration and 3-axis angular velocity data of corresponding joints. Our dataset provides time synchronous depth video, skeleton joint position, 3-axis acceleration and 3-axis angular velocity data to describe a complete human action.

1. Sensors

  The CZU-MHAD uses 1 Microsoft Kinect V2 and 10 wearable sensors MPU9250. These two kinds of sensors are widely used, which have the characteristics of low power consumption, low cost and simple operation. In addition, it does not require too much computing power to process the data collected by the two kind sensors in real time.

1.1 Kinect v2

  The above picture is the Microsoft Kinect V2, which can collect both color and depth images at a sampling frequency of 30 frames per second. Kinect SDK is a software package provided by Microsoft, which can be used to track 25 skeleton joint points and their 3D spatial positions. You can download the Kinect SDK in https://www.microsoft.com/en-us/download/details.aspx?id=44561.

  The above image shows 25 skeleton joint points of the human body that Kinect V2 can track.

1.2 MPU9250

  The MPU9250 can capture 3-axis acceleration, 3-axis angular velocity and 3-axis magnetic intensity.

  • The measurement range of MPU9250:
    • the measurement range of accelerometer is ±16g;
    • the measurement range of angular velocity of the gyroscope is ±2000 degrees/second.

  CZU-MHAD uses Raspberry PI to interact with MPU9250 through the integrated circuit bus (IIC) interface, realizing the functions of reading, saving and uploading MPU9250 sensor data to the server.The connection between Raspberry PI and MPU9250 is shown in picture.

  You can visit https://projects.raspberrypi.org/en/projects/raspberry-pi-setting-up to learn more about Raspberry PI.

2. Data Acquisition System Architecture

  This section introduces the data acquisition system of CZU-MHAD dataset. CZU-MHAD uses Kinect V2 sensor to collect depth image and joint position data, and uses MPU9250 sensor to collect 3-axis acceleration data and 3-axis angular velocity data. In order to collect the 3-axis acceleration data and the 3-axis angular velocity data of the whole body, a motion data acquisition system including 10 MPU9250 sensors is built-in this paper. The sampling system architecture is shown in following picture.

  The MPU9250 sensor is controlled by Raspberry PI, Kinect V2 is controlled by a notebook computer, and time synchronization with a NTP server is carried out every time data is collected. After considering the sampling scheme of MHAD and UTD-MHAD, the position of wearable sensors is determined as shown in the following picture.

  The points marked in red in the figure are the positions of inertial sensors, the left in the figure is the left side of the human body, and the right in the figure is the right side of the human body.

3. Information for "CZU-MHAD" dataset.

  The CZU-MHAD dataset contains 22 actions performed by 5 subjects (5 males). Each subject repeated each action >8 times. The CZU-MHAD dataset contains a total of >880 samples. The 22 actions performed are listed in Table. It can be seen that CZU-MHAD includes common gestures (such as Draw fork, Draw circle),daily activities (such as Sur Place, Clap, Bend down), and training actions (such as Left body turning movement, Left lateral movement).

Describe different actions in English:

ID Action name ID Action name ID Action name ID Action name
1 Right high wave 7 Draw fork with right hand 13 Right foot kick side 19 Left body turning movement
2 Left high wave 8 Draw fork with left hand 14 Left foot kick side 20 Right body turning movement
3 Right horizontal wave 9 Draw circle with right hand 15 Clap 21 Left lateral movement
4 Left horizontal wave 10 Draw circle with left hand 16 Bend down 22 Right lateral movement
5 Hammer with right hand 11 Right foot kick foward 17 Wave up and down
6 Grasp with right hand 12 Left foot kick foward 18 Sur Place

Describe different actions in Chinese::

ID Action name ID Action name ID Action name ID Action name
1 右高挥手 7 右手画× 13 右脚侧踢 19 左体转
2 左高挥手 8 左手画× 14 左脚侧踢 20 右体转
3 右水平挥手 9 右手画○ 15 拍手 21 左体侧
4 左水平挥手 10 左手画○ 16 弯腰 22 右体侧
5 锤(右手) 11 右脚前踢 17 上下挥手
6 抓(右手) 12 左脚前踢 18 原地踏步

4. How to download the dataset

   We offer one way to download our CZU-MHAD dataset:

  1. BaiduDisk(百度网盘)

    (Link) 链接:https://pan.baidu.com/s/1SBy0D2f1ZoX_mDyd3YEp2Q
    (Code) 提取码:qsq1

  In the CZU-MHAD, you will see three subfolders:

  • depth_mat

       The depth_mat contains the depth images captured by Kinect V2. In this folder, each file represents an action sample. Each file is named by the subject's name, the category label of the action and the time of each action of each subject. Take cyy_a1_t1.mat as an example, cyy is the subject's name, a1 is the name of the action, t1 stands the first time to perform this action. How to read data is shown in our sample code.

  • sensors_mat

       The sensors_mat contains the data of 3-axis acceleration and 3-axis angular velocity captured by MPU9250. In this folder, each file represents an action sample. Each file is named by the subject's name, the category label of the action and the time of each action of each subject. Take cyy_a1_t1.mat as an example, cyy is the subject's name, a1 is the name of the action, t1 stands the first time to perform this action. How to read data is shown in our sample code.

  • skeleton_mat

       The skeleton_mat contains the position data of skeleton joint points captured by Kinect V2. In this folder, each file represents an action sample. Each file is named by the subject's name, the category label of the action and the time of each action of each subject. Take cyy_a1_t1.mat as an example, cyy is the subject's name, a1 is the name of the action, t1 stands the first time to perform this action. How to read data is shown in our sample code.

5. Sample codes

  1. BaiduDisk(百度网盘)

    (Link) 链接:https://pan.baidu.com/s/1bWq7ypygjTffkor1GAExMQ

    (Code) 提取码:limf

6. Citation

To use our dataset, please refer to the following paper:

  • Mo Yujian, Hou Zhenjie, Chang Xingzhi, Liang Jiuzhen, Chen Chen, Huan Juan. Structural feature representation and fusion of behavior recognition oriented human spatial cooperative motion[J]. Journal of Beijing University of Aeronautics and Astronautics,2019,(12):2495-2505.

7. Mailing List

  If you are interested to recieve news, updates, and future events about this dataset, please email me.

#. Thanks(致谢)

  1. Cui Yaoyao(崔瑶瑶)
  2. Chao Xin(巢新)
  3. Qin Yinhua(秦银华)
  4. Zhang Yuheng(张宇恒)
  5. Mo Yujian(莫宇剑)

#. Gao Liang(高亮)

#. Shi Yuhang(石宇航)

  The subjects marked with '#' also participated in our data collection process. However, due to the unstable power supply and abnormal heat dissipation of Raspberry PI, their behavior data is abnormal. Therefore, we do not provide their data.

You might also like...
Official PyTorch implementation of
Official PyTorch implementation of "IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos", CVPRW 2021

IntegralAction: Pose-driven Feature Integration for Robust Human Action Recognition in Videos Introduction This repo is official PyTorch implementatio

Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in Tensorflow Lite.

TFLite-msg_chn_wacv20-depth-completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model

Info and sample codes for "NTU RGB+D Action Recognition Dataset"

"NTU RGB+D" Action Recognition Dataset "NTU RGB+D 120" Action Recognition Dataset "NTU RGB+D" is a large-scale dataset for human action recognition. I

LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

 COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping
COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping

COVINS -- A Framework for Collaborative Visual-Inertial SLAM and Multi-Agent 3D Mapping Version 1.0 COVINS is an accurate, scalable, and versatile vis

Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

The implemention of Video Depth Estimation by Fusing Flow-to-Depth Proposals

Flow-to-depth (FDNet) video-depth-estimation This is the implementation of paper Video Depth Estimation by Fusing Flow-to-Depth Proposals Jiaxin Xie,

Releases(skeleton)
Owner
yujmo
帅气,阳光,灿烂,美丽,大方
yujmo
The codes of paper 'Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees'

Active-LATHE: An Active Learning Algorithm for Boosting the Error exponent for Learning Homogeneous Ising Trees This project contains the codes of pap

0 Apr 20, 2022
Repository for the "Gotta Go Fast When Generating Data with Score-Based Models" paper

Gotta Go Fast When Generating Data with Score-Based Models This repo contains the official implementation for the paper Gotta Go Fast When Generating

Alexia Jolicoeur-Martineau 89 Nov 09, 2022
The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark."

FFA-IR The official start-up code for paper "FFA-IR: Towards an Explainable and Reliable Medical Report Generation Benchmark." The framework is inheri

Mingjie 28 Dec 16, 2022
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
N-Omniglot is a large neuromorphic few-shot learning dataset

N-Omniglot [Paper] || [Dataset] N-Omniglot is a large neuromorphic few-shot learning dataset. It reconstructs strokes of Omniglot as videos and uses D

11 Dec 05, 2022
Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks

OnsagerNet Learning hidden low dimensional dyanmics using a Generalized Onsager Principle and neural networks This is the original pyTorch implemenati

Haijun.Yu 3 Aug 24, 2022
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
Code Release for the paper "TriBERT: Full-body Human-centric Audio-visual Representation Learning for Visual Sound Separation"

TriBERT This repository contains the code for the NeurIPS 2021 paper titled "TriBERT: Full-body Human-centric Audio-visual Representation Learning for

UBC Computer Vision Group 8 Aug 31, 2022
Context Axial Reverse Attention Network for Small Medical Objects Segmentation

CaraNet: Context Axial Reverse Attention Network for Small Medical Objects Segmentation This repository contains the implementation of a novel attenti

401 Dec 23, 2022
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022