An OpenAI Gym environment for multi-agent car racing based on Gym's original car racing environment.

Overview

Multi-Car Racing Gym Environment

This repository contains MultiCarRacing-v0 a multiplayer variant of Gym's original CarRacing-v0 environment.

This environment is a simple multi-player continuous contorl task. The state consists of 96x96 pixels for each player. The per-player reward is -0.1 every timestep and +1000/num_tiles * (num_agents-past_visitors)/num_agents for each tile visited. For example, in a race with 2 agents, the first agent to visit a tile receives a reward of +1000/num_tiles and the second agent to visit the tile receives a reward of +500/num_tiles for that tile. Each agent can only be rewarded once for visiting a particular tile. The motivation behind this reward structure is to be sufficiently dense for simple learnability of the basic driving skill while incentivising competition.

Installation

git clone https://github.com/igilitschenski/multi_car_racing.git
cd multi_car_racing
pip install -e .

Basic Usage

After installation, the environment can be tried out by running:

python -m gym_multi_car_racing.multi_car_racing

This will launch a two-player variant (each player in its own window) that can be controlled via the keyboard (player 1 via arrow keys and player 2 via W, A, S, D).

Let's quickly walk through how this environment can be used in your code:

import gym
import gym_multi_car_racing

env = gym.make("MultiCarRacing-v0", num_agents=2, direction='CCW',
        use_random_direction=True, backwards_flag=True, h_ratio=0.25,
        use_ego_color=False)

obs = env.reset()
done = False
total_reward = 0

while not done:
  # The actions have to be of the format (num_agents,3)
  # The action format for each car is as in the CarRacing-v0 environment.
  action = my_policy(obs)

  # Similarly, the structure of this is the same as in CarRacing-v0 with an
  # additional dimension for the different agents, i.e.
  # obs is of shape (num_agents, 96, 96, 3)
  # reward is of shape (num_agents,)
  # done is a bool and info is not used (an empty dict).
  obs, reward, done, info = env.step(action)
  total_reward += reward
  env.render()

print("individual scores:", total_reward)

Overview of environment parameters:

Parameter Type Description
num_agents int Number of agents in environment (Default: 2)
direction str Winding direction of the track. Can be 'CW' or 'CCW' (Default: 'CCW')
use_random_direction bool Randomize winding direction of the track. Disregards direction if enabled (Default: True).
backwards_flag bool Shows a small flag if agent driving backwards (Default: True).
h_ratio float Controls horizontal agent location in the state (Default: 0.25)
use_ego_color bool In each view the ego vehicle has the same color if activated (Default: False).

This environment contains the CarRacing-v0 environment as a special case. It can be created via

env = gym.make("MultiCarRacing-v0", num_agents=1, use_random_direction=False, 
        backwards_flag=False)

Deprecation Warning: We might further simplify the environment in the future. Our current thoughts on deprecation concern the following functionalities.

  • The direction related arguments (use_random_direction & direction) were initially aded to make driving fairer as the agents' spawning locations were fixed. We resolved this unfairnes by randomizing the start positions of the agents instead.
  • The impact of backwards_flag seems very little in practice.
  • Similarly, it was interesting to play around with placing the agent at different horizontal locations of the observation (via h_ratio) but the default from CarRacing-v0 ended up working well.
  • The environment also contains some (not active) code on allowing penalization of driving backwards. We were worried that agents might go backwards to have more tiles on which they are first but it turned out not to be necessary for successfull learning.

We are interested in any feedback regarding these planned deprecations.

Citation

If you find this environment useful, please cite our CoRL 2020 paper:

@inproceedings{SSG2020,
    title={Deep Latent Competition: Learning to Race Using Visual
      Control Policies in Latent Space},
    author={Wilko Schwarting and Tim Seyde and Igor Gilitschenski
      and Lucas Liebenwein and Ryan Sander and Sertac Karaman and Daniela Rus},
    booktitle={Conference on Robot Learning},
    year={2020}
}
Owner
Igor Gilitschenski
Igor Gilitschenski
Using PyTorch Perform intent classification using three different models to see which one is better for this task

Using PyTorch Perform intent classification using three different models to see which one is better for this task

Yoel Graumann 1 Feb 14, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

GCNet for Object Detection By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu. This repo is a official implementation of "GCNet: Non-local Networ

Jerry Jiarui XU 1.1k Dec 29, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners

An pytorch implementation of Masked Autoencoders Are Scalable Vision Learners This is a coarse version for MAE, only make the pretrain model, the fine

FlyEgle 214 Dec 29, 2022
Codes and Data Processing Files for our paper.

Code Scripts and Processing Files for EEG Sleep Staging Paper 1. Folder Tree ./src_preprocess (data preprocessing files for SHHS and Sleep EDF) sleepE

Chaoqi Yang 18 Dec 12, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences

Model-free Vehicle Tracking and State Estimation in Point Cloud Sequences 1. Introduction This project is for paper Model-free Vehicle Tracking and St

TuSimple 92 Jan 03, 2023
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
Title: Graduate-Admissions-Predictor

The purpose of this project is create a predictive model capable of identifying the probability of a person securing an admit based on their personal profile parameters. Simplified visualisations hav

Akarsh Singh 1 Jan 26, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
The Simplest DCGAN Implementation

DCGAN in TensorLayer This is the TensorLayer implementation of Deep Convolutional Generative Adversarial Networks. Looking for Text to Image Synthesis

TensorLayer Community 310 Dec 13, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
利用Tensorflow实现基于CNN的中文短文本分类

Text Classification with CNN 使用卷积神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 还可以去读dennybritz大牛的博客:Implemen

Jeremiah 4 Nov 08, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020