PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

Overview

pytorch-a2c-ppo-acktr

Update (April 12th, 2021)

PPO is great, but Soft Actor Critic can be better for many continuous control tasks. Please check out my new RL repository in jax.

Please use hyper parameters from this readme. With other hyper parameters things might not work (it's RL after all)!

This is a PyTorch implementation of

  • Advantage Actor Critic (A2C), a synchronous deterministic version of A3C
  • Proximal Policy Optimization PPO
  • Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation ACKTR
  • Generative Adversarial Imitation Learning GAIL

Also see the OpenAI posts: A2C/ACKTR and PPO for more information.

This implementation is inspired by the OpenAI baselines for A2C, ACKTR and PPO. It uses the same hyper parameters and the model since they were well tuned for Atari games.

Please use this bibtex if you want to cite this repository in your publications:

@misc{pytorchrl,
  author = {Kostrikov, Ilya},
  title = {PyTorch Implementations of Reinforcement Learning Algorithms},
  year = {2018},
  publisher = {GitHub},
  journal = {GitHub repository},
  howpublished = {\url{https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail}},
}

Supported (and tested) environments (via OpenAI Gym)

I highly recommend PyBullet as a free open source alternative to MuJoCo for continuous control tasks.

All environments are operated using exactly the same Gym interface. See their documentations for a comprehensive list.

To use the DeepMind Control Suite environments, set the flag --env-name dm. . , where domain_name and task_name are the name of a domain (e.g. hopper) and a task within that domain (e.g. stand) from the DeepMind Control Suite. Refer to their repo and their tech report for a full list of available domains and tasks. Other than setting the task, the API for interacting with the environment is exactly the same as for all the Gym environments thanks to dm_control2gym.

Requirements

In order to install requirements, follow:

# PyTorch
conda install pytorch torchvision -c soumith

# Other requirements
pip install -r requirements.txt

Contributions

Contributions are very welcome. If you know how to make this code better, please open an issue. If you want to submit a pull request, please open an issue first. Also see a todo list below.

Also I'm searching for volunteers to run all experiments on Atari and MuJoCo (with multiple random seeds).

Disclaimer

It's extremely difficult to reproduce results for Reinforcement Learning methods. See "Deep Reinforcement Learning that Matters" for more information. I tried to reproduce OpenAI results as closely as possible. However, majors differences in performance can be caused even by minor differences in TensorFlow and PyTorch libraries.

TODO

  • Improve this README file. Rearrange images.
  • Improve performance of KFAC, see kfac.py for more information
  • Run evaluation for all games and algorithms

Visualization

In order to visualize the results use visualize.ipynb.

Training

Atari

A2C

python main.py --env-name "PongNoFrameskip-v4"

PPO

python main.py --env-name "PongNoFrameskip-v4" --algo ppo --use-gae --lr 2.5e-4 --clip-param 0.1 --value-loss-coef 0.5 --num-processes 8 --num-steps 128 --num-mini-batch 4 --log-interval 1 --use-linear-lr-decay --entropy-coef 0.01

ACKTR

python main.py --env-name "PongNoFrameskip-v4" --algo acktr --num-processes 32 --num-steps 20

MuJoCo

Please always try to use --use-proper-time-limits flag. It properly handles partial trajectories (see https://github.com/sfujim/TD3/blob/master/main.py#L123).

A2C

python main.py --env-name "Reacher-v2" --num-env-steps 1000000

PPO

python main.py --env-name "Reacher-v2" --algo ppo --use-gae --log-interval 1 --num-steps 2048 --num-processes 1 --lr 3e-4 --entropy-coef 0 --value-loss-coef 0.5 --ppo-epoch 10 --num-mini-batch 32 --gamma 0.99 --gae-lambda 0.95 --num-env-steps 1000000 --use-linear-lr-decay --use-proper-time-limits

ACKTR

ACKTR requires some modifications to be made specifically for MuJoCo. But at the moment, I want to keep this code as unified as possible. Thus, I'm going for better ways to integrate it into the codebase.

Enjoy

Atari

python enjoy.py --load-dir trained_models/a2c --env-name "PongNoFrameskip-v4"

MuJoCo

python enjoy.py --load-dir trained_models/ppo --env-name "Reacher-v2"

Results

A2C

BreakoutNoFrameskip-v4

SeaquestNoFrameskip-v4

QbertNoFrameskip-v4

beamriderNoFrameskip-v4

PPO

BreakoutNoFrameskip-v4

SeaquestNoFrameskip-v4

QbertNoFrameskip-v4

beamriderNoFrameskip-v4

ACKTR

BreakoutNoFrameskip-v4

SeaquestNoFrameskip-v4

QbertNoFrameskip-v4

beamriderNoFrameskip-v4

Owner
Ilya Kostrikov
Post doc
Ilya Kostrikov
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
GAN encoders in PyTorch that could match PGGAN, StyleGAN v1/v2, and BigGAN. Code also integrates the implementation of these GANs.

MTV-TSA: Adaptable GAN Encoders for Image Reconstruction via Multi-type Latent Vectors with Two-scale Attentions. This is the official code release fo

owl 37 Dec 24, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
Implemented fully documented Particle Swarm Optimization algorithm (basic model with few advanced features) using Python programming language

Implemented fully documented Particle Swarm Optimization (PSO) algorithm in Python which includes a basic model along with few advanced features such as updating inertia weight, cognitive, social lea

9 Nov 29, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
This repository is a series of notebooks that show solutions for the projects at Dataquest.io.

Dataquest Project Solutions This repository is a series of notebooks that show solutions for the projects at Dataquest.io. Of course, there are always

Dataquest 1.1k Dec 30, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
LSSY量化交易系统

LSSY量化交易系统 该项目是本人3年来研究量化慢慢积累开发的一套系统,属于早期作品慢慢修改而来,仅供学习研究,回测分析,实盘交易部分未公开

55 Oct 04, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
PyTorch implementation of the REMIND method from our ECCV-2020 paper "REMIND Your Neural Network to Prevent Catastrophic Forgetting"

REMIND Your Neural Network to Prevent Catastrophic Forgetting This is a PyTorch implementation of the REMIND algorithm from our ECCV-2020 paper. An ar

Tyler Hayes 72 Nov 27, 2022
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
Use CLIP to represent video for Retrieval Task

A Straightforward Framework For Video Retrieval Using CLIP This repository contains the basic code for feature extraction and replication of results.

Jesus Andres Portillo Quintero 54 Dec 22, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
PyTorch implementation of the paper The Lottery Ticket Hypothesis for Object Recognition

LTH-ObjectRecognition The Lottery Ticket Hypothesis for Object Recognition Sharath Girish*, Shishira R Maiya*, Kamal Gupta, Hao Chen, Larry Davis, Abh

16 Feb 06, 2022