Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Overview

Self-Supervised Multi-Frame Monocular Scene Flow

3D visualization of estimated depth and scene flow (overlayed with input image) from temporally consecutive images.
Trained on KITTI in a self-supervised manner, and tested on DAVIS.

This repository is the official PyTorch implementation of the paper:

   Self-Supervised Multi-Frame Monocular Scene Flow
   Junhwa Hur and Stefan Roth
   CVPR, 2021
   Arxiv

  • Contact: junhwa.hur[at]gmail.com

Installation

The code has been tested with Anaconda (Python 3.8), PyTorch 1.8.1 and CUDA 10.1 (Different Pytorch + CUDA version is also compatible).
Please run the provided conda environment setup file:

conda env create -f environment.yml
conda activate multi-mono-sf

(Optional) Using the CUDA implementation of the correlation layer accelerates training (~50% faster):

./install_correlation.sh

After installing it, turn on this flag --correlation_cuda_enabled=True in training/evaluation script files.

Dataset

Please download the following to datasets for the experiment:

To save space, we convert the KITTI Raw png images to jpeg, following the convention from MonoDepth:

find (data_folder)/ -name '*.png' | parallel 'convert {.}.png {.}.jpg && rm {}'

We also converted images in KITTI Scene Flow 2015 as well. Please convert the png images in image_2 and image_3 into jpg and save them into the seperate folder image_2_jpg and image_3_jpg.
To save space further, you can delete the velodyne point data in KITTI raw data as we don't need it.

Training and Inference

The scripts folder contains training/inference scripts.

For self-supervised training, you can simply run the following script files:

Script Training Dataset
./train_selfsup.sh Self-supervised KITTI Split

Fine-tuning is done with two stages: (i) first finding the stopping point using train/valid split, and then (ii) fune-tuning using all data with the found iteration steps.

Script Training Dataset
./ft_1st_stage.sh Semi-supervised finetuning KITTI raw + KITTI 2015
./ft_2nd_stage.sh Semi-supervised finetuning KITTI raw + KITTI 2015

In the script files, please configure these following PATHs for experiments:

  • DATA_HOME : the directory where the training or test is located in your local system.
  • EXPERIMENTS_HOME : your own experiment directory where checkpoints and log files will be saved.

To test pretrained models, you can simply run the following script files:

Script Training Dataset
./eval_selfsup_train.sh self-supervised KITTI 2015 Train
./eval_ft_test.sh fine-tuned KITTI 2015 Test
./eval_davis.sh self-supervised DAVIS (one scene)
./eval_davis_all.sh self-supervised DAVIS (all scenes)
  • To save visuailization of outputs, please turn on --save_vis=True in the script.
  • To save output images for KITTI Scene Flow 2015 Benchmark submission, please turn on --save_out=True in the script.

Pretrained Models

The checkpoints folder contains the checkpoints of the pretrained models.

Acknowledgement

Please cite our paper if you use our source code.

@inproceedings{Hur:2021:SSM,  
  Author = {Junhwa Hur and Stefan Roth},  
  Booktitle = {CVPR},  
  Title = {Self-Supervised Multi-Frame Monocular Scene Flow},  
  Year = {2021}  
}
  • Portions of the source code (e.g., training pipeline, runtime, argument parser, and logger) are from Jochen Gast
Owner
Visual Inference Lab @TU Darmstadt
Visual Inference Lab @TU Darmstadt
Attendance Monitoring with Face Recognition using Python

Attendance Monitoring with Face Recognition using Python A python GUI integrated attendance system using face recognition to take attendance. In this

Vaibhav Rajput 2 Jun 21, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022
Improving adversarial robustness by a coupling rejection strategy

Adversarial Training with Rectified Rejection The code for the paper Adversarial Training with Rectified Rejection. Environment settings and libraries

Tianyu Pang 29 Jan 06, 2023
Code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation

PiecewiseLinearTimeSeriesApproximation code from Daniel Lemire, A Better Alternative to Piecewise Linear Time Series Segmentation, SIAM Data Mining 20

Daniel Lemire 21 Oct 27, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
Mememoji - A facial expression classification system that recognizes 6 basic emotions: happy, sad, surprise, fear, anger and neutral.

a project built with deep convolutional neural network and ❤️ Table of Contents Motivation The Database The Model 3.1 Input Layer 3.2 Convolutional La

Jostine Ho 761 Dec 05, 2022
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
Second-order Attention Network for Single Image Super-resolution (CVPR-2019)

Second-order Attention Network for Single Image Super-resolution (CVPR-2019) "Second-order Attention Network for Single Image Super-resolution" is pub

516 Dec 28, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
FaceAPI: AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using TensorFlow/JS

FaceAPI AI-powered Face Detection & Rotation Tracking, Face Description & Recognition, Age & Gender & Emotion Prediction for Browser and NodeJS using

Vladimir Mandic 395 Dec 29, 2022
Official code for "Maximum Likelihood Training of Score-Based Diffusion Models", NeurIPS 2021 (spotlight)

Maximum Likelihood Training of Score-Based Diffusion Models This repo contains the official implementation for the paper Maximum Likelihood Training o

Yang Song 84 Dec 12, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022