In this repository, I have developed an end to end Automatic speech recognition project. I have developed the neural network model for automatic speech recognition with PyTorch and used MLflow to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry.

Overview

End to End Automatic Speech Recognition

architecture

In this repository, I have developed an end to end Automatic speech recognition project. I have developed the neural network model for automatic speech recognition with PyTorch and used MLflow to manage the ML lifecycle, including experimentation, reproducibility, deployment, and a central model registry. The Neural Acoustic model is built with reference to the DeepSpeech2 model, but not the exact DeepSpeach2 model or the DeepSpeech model as mentioned in their respective research papers.

Technologies used:

  1. MLflow.mlflow
    • to manage the ML lifecycle.
    • to track and compare model performance in the ml lifecyle.
    • experimentation, reproducibility, deployment, and a central model registry.
  2. Pytorch.pytorch
    • The Acoustic Neural Network is implemented with pytorch.
    • torchaudio for feature extraction and data pre-processing.

Speech Recognition Pipeline

architecture1

Dataset

In this project, the LibriSpeech dataset has been used to train and validate the model. It has audio data for input and text speech for the respective audio to be predicted by our model. Also, I have used a subset of 2000 files from the training and test set of the LibriSpeech dataset for faster training and validation over limited GPU power and usage limit.

Pre-Processing

In this process Torchaudio has been used to extract the waveform and sampling rate from the audiofile. Then have been used MFCC(Mel-frequency cepstrum coefficients) for feature extraction from the waveform. MelSpectogram, Spectogram and Frequency Masking could also be used in this case for feature exxtraction.

Acoustic Model architecture.

The Neural Network architecture consist of Residul-CNN blocks, BidirectionalGRU blocks, and fully connected Linear layers for final classification. From the input layer, we have two Residual CNN blocks(in sequential) with batch normalization, followed by a fully connected layer, hence connecting it to three bi-directional GRU blocks(in sequential) and finally fully connected linear layers for classification.

CTC(Connectionist Temporal Classification) Loss as the base loss function for our model and AdamW as the optimizer.

Decoding

We have used Greedy Decoder which argmax's the output of the Neural Network and transforms it into text through character mapping.

ML Lifecycle Pipeline

architecture2
We start by initializing the mlflow server where we need to specify backend storage, artifact uri, host and the port. Then we create an experiment, start a run within the experiment which inturn tracks the training and validation loss. Then we save the model followed by registring it and further use the registered model for deployment over the production.

Implementation

First we need to initialize the mlflow server.

mlflow run -e server . 

To start the server in a non-conda environmnet

mlflow run -e server . --no-conda

the server could also be initialized directly from the terminal by the following command. But for this the tracking uri need to be set manually.

mlflow server \
--backend-store-uri sqlite:///mlflow.db \
--default-artifact-root ./mlruns \
--host 127.0.0.1

Then we need to start the model training.

mlflow run -e train --experiment-name "SpeechRecognition" . -P epoch=20 -P batch=32

To train in non-conda environment.

mlflow run -e train --experiment-name "SpeechRecognition" . -P epoch=20 -P batch=32 --no-conda

To train the model through python command.

python main.py --epoch=20 --batch=20

This command functions the same as the above mlflow commands. It's just that I was facing some issues or bugs while running with mlflow command which worked prefectly fine while running with the python command.

Trained model performance

trainloss
testloss
lr
wer
cer
Now its time to validate the registered model. Enter the registered model name with respective model stage and version and file_id of the LibriSpeech dataset Test file.

mlflow run -e validate . -P train=False -P registered_model=SpeechRecognitionModel -P model_stage=Production file_id=1089-134686-0000
python main.py --train=False --registered_model=SpeechRecognitionModel --model_stage=Production --file_id=1089-134686-0000

Dashboard

dashboard

Registered model

regmodel

Artifacts

artifacts

Results

testresult

Target: she spoke with a sudden energy which partook of fear and passion and flushed her thin cheek and made her languid eyes flash
Predicted: she spot with a sudn inderge which pert huopk obeer an pasion amd hust her sting cheek and mad herlang wld ise flush
Target: we look for that reward which eye hath not seen nor ear heard neither hath entered into the heart of man
Predicted: we look forthat rewrd which i havt notse mor iear herd meter hat entere incs the hard oftmon
Target: there was a grim smile of amusement on his shrewd face
Predicted: there was a grim smiriel of a mise men puisoreud face
Target: if this matter is not to become public we must give ourselves certain powers and resolve ourselves into a small private court martial
Predicted: if this motere is not to mecome pubotk we mestgoeourselv certan pouors and resal orselveent a srmall pribut court nmatheld
Taarget: no good my dear watson
Predicted: no good my deare otsen 
Target: well she was better though she had had a bad night
Predicted: all she ws bhatter thu shu oid hahabaut night 
Target: the air is heavy the sea is calm
Predicted: the ar is haavyd the see is coomd 
Target: i left you on a continent and here i have the honor of finding you on an island
Predicted: i left you n a contonent and herei hafe the aner a find de youw on an ihalnd 
Target: the young man is in bondage and much i fear his death is decreed
Predicted: th young manis an bondage end much iffeer his dethis de creed 
Target: hay fever a heart trouble caused by falling in love with a grass widow
Predicted: hay fever ahar trbrl cawaese buy fallling itlelov wit the gressh wideo
Target: bravely and generously has he battled in my behalf and this and more will i dare in his service
Predicted: bravly ansjenereusly has he btaoled and miy ba hah andthis en morera welig darind his serves 

Future Scopes

  • There are other Neural Network models like Wav2Vec, Jasper which also be used and tested against for better model performance.
  • This is not a real-time automatic speech recognition project, where human speech would be decoded to text in real-time like in Amazon Alexa and Google Assistant. It takes the audio file as input and returns predicted speech. So, this could be taken to further limits by developing it into real-time automatic speech recognition.
  • The entire project has been done for local deployment. For the Productionisation of the model and datasets AWS s3 bucket and Microsoft Azure could be used, Kubernetes would also serve as a better option for the Productionisation of the model.
Owner
Victor Basu
Hello! I am Data Scientist and I love to do research on Data Science and Machine Learning
Victor Basu
This is a project of data parallel that running on NLP tasks.

This is a project of data parallel that running on NLP tasks.

2 Dec 12, 2021
Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Silero Models: pre-trained speech-to-text, text-to-speech models and benchmarks made embarrassingly simple

Alexander Veysov 3.2k Dec 31, 2022
Finding Label and Model Errors in Perception Data With Learned Observation Assertions

Finding Label and Model Errors in Perception Data With Learned Observation Assertions This is the project page for Finding Label and Model Errors in P

Stanford Future Data Systems 17 Oct 14, 2022
Text-to-Speech for Belarusian language

title emoji colorFrom colorTo sdk app_file pinned Belarusian TTS 🐸 green green gradio app.py false Belarusian TTS 📢 🤖 Belarusian TTS (text-to-speec

Yurii Paniv 1 Nov 27, 2021
⚡ Automatically decrypt encryptions without knowing the key or cipher, decode encodings, and crack hashes ⚡

Translations 🇩🇪 DE 🇫🇷 FR 🇭🇺 HU 🇮🇩 ID 🇮🇹 IT 🇳🇱 NL 🇧🇷 PT-BR 🇷🇺 RU 🇨🇳 ZH ➡️ Documentation | Discord | Installation Guide ⬅️ Fully autom

11.2k Jan 05, 2023
My implementation of Safaricom Machine Learning Codility test. The code has bugs, logical I guess I made errors and any correction will be appreciated.

Safaricom_Codility Machine Learning 2022 The test entails two questions. Question 1 was on Machine Learning. Question 2 was on SQL I ran out of time.

Lawrence M. 1 Mar 03, 2022
Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products

Contains analysis of trends from Fitbit Dataset (source: Kaggle) to see how the trends can be applied to Bellabeat customers and Bellabeat products.

Leah Pathan Khan 2 Jan 12, 2022
GPT-3 command line interaction

Writer_unblock Straight-forward command line interfacing with GPT-3. Finding yourself stuck at a conceptual stage? Spinning your wheels needlessly on

Seth Nuzum 6 Feb 10, 2022
Gold standard corpus annotated with verb-preverb connections for Hungarian.

Hungarian Preverb Corpus A gold standard corpus manually annotated with verb-preverb connections for Hungarian. corpus The corpus consist of the follo

RIL Lexical Knowledge Representation Research Group 3 Jan 27, 2022
This repository is home to the Optimus data transformation plugins for various data processing needs.

Transformers Optimus's transformation plugins are implementations of Task and Hook interfaces that allows execution of arbitrary jobs in optimus. To i

Open Data Platform 37 Dec 14, 2022
Persian-lexicon - A lexicon of 70K unique Persian (Farsi) words

Persian Lexicon This repo uses Uppsala Persian Corpus (UPC) to construct a lexic

Saman Vaisipour 7 Apr 01, 2022
This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm, corresponding to the paper Fully Supervised Speaker Diarization.

UIS-RNN Overview This is the library for the Unbounded Interleaved-State Recurrent Neural Network (UIS-RNN) algorithm. UIS-RNN solves the problem of s

Google 1.4k Dec 28, 2022
Auto translate textbox from Japanese to English or Indonesia

priconne-auto-translate Auto translate textbox from Japanese to English or Indonesia How to use Install python first, Anaconda is recommended Install

Aji Priyo Wibowo 5 Aug 25, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

20.5k Jan 08, 2023
Ask for weather information like a human

weather-nlp About Ask for weather information like a human. Goals Understand typical questions like: Hourly temperatures in Potsdam on 2020-09-15. Rai

5 Oct 29, 2022
Build Text Rerankers with Deep Language Models

Reranker is a lightweight, effective and efficient package for training and deploying deep languge model reranker in information retrieval (IR), question answering (QA) and many other natural languag

Luyu Gao 140 Dec 06, 2022
Grover is a model for Neural Fake News -- both generation and detectio

Grover is a model for Neural Fake News -- both generation and detection. However, it probably can also be used for other generation tasks.

Rowan Zellers 856 Dec 24, 2022
Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

AI-BOT Bot to connect a real Telegram user, simulating responses with OpenAI's davinci GPT-3 model.

Thempra 2 Dec 21, 2022
A spaCy wrapper of OpenTapioca for named entity linking on Wikidata

spaCyOpenTapioca A spaCy wrapper of OpenTapioca for named entity linking on Wikidata. Table of contents Installation How to use Local OpenTapioca Vizu

Universitätsbibliothek Mannheim 80 Jan 03, 2023
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022