Implementation of Deformable Attention in Pytorch from the paper "Vision Transformer with Deformable Attention"

Overview

Deformable Attention

Implementation of Deformable Attention from this paper in Pytorch, which appears to be an improvement to what was proposed in DETR. The relative positional embedding has also been modified for better extrapolation, using the Continuous Positional Embedding proposed in SwinV2.

Install

$ pip install deformable-attention

Usage

import torch
from deformable_attention import DeformableAttention

attn = DeformableAttention(
    dim = 512,                   # feature dimensions
    dim_head = 64,               # dimension per head
    heads = 8,                   # attention heads
    dropout = 0.,                # dropout
    downsample_factor = 4,       # downsample factor (r in paper)
    offset_scale = 4,            # scale of offset, maximum offset
    offset_groups = None,        # number of offset groups, should be multiple of heads
    offset_kernel_size = 6,      # offset kernel size
)

x = torch.randn(1, 512, 64, 64)
attn(x) # (1, 512, 64, 64)

3d deformable attention

import torch
from deformable_attention import DeformableAttention3D

attn = DeformableAttention3D(
    dim = 512,                          # feature dimensions
    dim_head = 64,                      # dimension per head
    heads = 8,                          # attention heads
    dropout = 0.,                       # dropout
    downsample_factor = (2, 8, 8),      # downsample factor (r in paper)
    offset_scale = (2, 8, 8),           # scale of offset, maximum offset
    offset_kernel_size = (4, 10, 10),   # offset kernel size
)

x = torch.randn(1, 512, 10, 32, 32) # (batch, dimension, frames, height, width)
attn(x) # (1, 512, 10, 32, 32)

1d deformable attention for good measure

import torch
from deformable_attention import DeformableAttention1D

attn = DeformableAttention1D(
    dim = 128,
    downsample_factor = 4,
    offset_scale = 2,
    offset_kernel_size = 6
)

x = torch.randn(1, 128, 512)
attn(x) # (1, 128, 512)

Citation

@misc{xia2022vision,
    title   = {Vision Transformer with Deformable Attention}, 
    author  = {Zhuofan Xia and Xuran Pan and Shiji Song and Li Erran Li and Gao Huang},
    year    = {2022},
    eprint  = {2201.00520},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@misc{liu2021swin,
    title   = {Swin Transformer V2: Scaling Up Capacity and Resolution},
    author  = {Ze Liu and Han Hu and Yutong Lin and Zhuliang Yao and Zhenda Xie and Yixuan Wei and Jia Ning and Yue Cao and Zheng Zhang and Li Dong and Furu Wei and Baining Guo},
    year    = {2021},
    eprint  = {2111.09883},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
You might also like...
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

MoCoPnet - Deformable 3D Convolution for Video Super-Resolution
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Implementation of a memory efficient multi-head attention as proposed in the paper, "Self-attention Does Not Need O(n²) Memory"

Memory Efficient Attention Pytorch Implementation of a memory efficient multi-head attention as proposed in the paper, Self-attention Does Not Need O(

Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch
Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image classification, in Pytorch

Transformer in Transformer Implementation of Transformer in Transformer, pixel level attention paired with patch level attention for image c

Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

The official pytorch implementation of our paper "Is Space-Time Attention All You Need for Video Understanding?"

TimeSformer This is an official pytorch implementation of Is Space-Time Attention All You Need for Video Understanding?. In this repository, we provid

An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Comments
  • The relationship between 'dim' and 'inner_dim'

    The relationship between 'dim' and 'inner_dim'

    Hi, I have a question about DeformableAttention module,

    I calculated the output volumes of the forward processes step by step, According to my calculation, the code works only when 'dim' and 'inner_dim' is same.

    Is there any reason why you implement it this way?

    Best regards, Hankyu

    opened by hanq0212 4
  • TypeError: meshgrid() got an unexpected keyword argument 'indexing'

    TypeError: meshgrid() got an unexpected keyword argument 'indexing'

    @lucidrains while trying to perform import torch from deformable_attention import DeformableAttention

    attn = DeformableAttention( dim = 512, # feature dimensions dim_head = 64, # dimension per head heads = 8, # attention heads dropout = 0., # dropout downsample_factor = 4, # downsample factor (r in paper) offset_scale = 4, # scale of offset, maximum offset offset_groups = None, # number of offset groups, should be multiple of heads offset_kernel_size = 6, # offset kernel size )

    x = torch.randn(1, 512, 64, 64) attn(x)

    Got error below from the line.. Kindly help

    https://github.com/lucidrains/deformable-attention/blob/9f3c0ae35652ce54687e0db409921018bfca3310/deformable_attention/deformable_attention_2d.py#L26

    opened by ChidanandKumarKS 1
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Official Implementation of Few-shot Visual Relationship Co-localization

VRC Official implementation of the Few-shot Visual Relationship Co-localization (ICCV 2021) paper project page | paper Requirements Use python = 3.8.

22 Oct 13, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
A high-performance distributed deep learning system targeting large-scale and automated distributed training.

HETU Documentation | Examples Hetu is a high-performance distributed deep learning system targeting trillions of parameters DL model training, develop

DAIR Lab 150 Dec 21, 2022
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training.

Updates (2020/06/21) Code of PVTv2 is released! PVTv2 largely improves PVTv1 and works better than Swin Transformer with ImageNet-1K pre-training. Pyr

1.3k Jan 04, 2023
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
Which Style Makes Me Attractive? Interpretable Control Discovery and Counterfactual Explanation on StyleGAN

Interpretable Control Exploration and Counterfactual Explanation (ICE) on StyleGAN Which Style Makes Me Attractive? Interpretable Control Discovery an

Bo Li 11 Dec 01, 2022
The pure and clear PyTorch Distributed Training Framework.

The pure and clear PyTorch Distributed Training Framework. Introduction Requirements and Usage Dependency Dataset Basic Usage Slurm Cluster Usage Base

WILL LEE 208 Dec 20, 2022
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urba

Yu Tian 115 Dec 29, 2022
This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR

This project is a re-implementation of MASTER: Multi-Aspect Non-local Network for Scene Text Recognition by MMOCR,which is an open-source toolbox based on PyTorch. The overall architecture will be sh

Jianquan Ye 82 Nov 17, 2022
Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

PSS: Personalized Image Semantic Segmentation Paper PSS: Personalized Image Semantic Segmentation Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming

张宇 15 Jul 09, 2022
Code for the AAAI-2022 paper: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification (AAAI 2022) Prerequisite PyTorch = 1.2.0 P

16 Dec 14, 2022
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022