Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Related tags

Deep Learninghifi-ecg
Overview

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations

Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Abstract: We propose using self-supervised discrete representations for the task of speech resynthesis. To generate disentangled representation, we separately extract low-bitrate representations for speech content, prosodic information, and speaker identity. This allows to synthesize speech in a controllable manner. We analyze various state-of-the-art, self-supervised representation learning methods and shed light on the advantages of each method while considering reconstruction quality and disentanglement properties. Specifically, we evaluate the F0 reconstruction, speaker identification performance (for both resynthesis and voice conversion), recordings' intelligibility, and overall quality using subjective human evaluation. Lastly, we demonstrate how these representations can be used for an ultra-lightweight speech codec. Using the obtained representations, we can get to a rate of 365 bits per second while providing better speech quality than the baseline methods.

Quick Links

Setup

Software

Requirements:

  • Python >= 3.6
  • PyTorch v1.8
  • Install dependencies
    git clone https://github.com/facebookresearch/speech-resynthesis.git
    cd speech-resynthesis
    pip install -r requirements.txt

Data

For LJSpeech:

  1. Download LJSpeech dataset from here into data/LJSpeech-1.1 folder.
  2. Downsample audio from 22.05 kHz to 16 kHz and pad
    bash
    python ./scripts/preprocess.py \
    --srcdir data/LJSpeech-1.1/wavs \
    --outdir data/LJSpeech-1.1/wavs_16khz \
    --pad
    

For VCTK:

  1. Download VCTK dataset from here into data/VCTK-Corpus folder.
  2. Downsample audio from 48 kHz to 16 kHz, trim trailing silences and pad
    python ./scripts/preprocess.py \
    --srcdir data/VCTK-Corpus/wav48_silence_trimmed \
    --outdir data/VCTK-Corpus/wav16_silence_trimmed_padded \
    --pad --postfix mic2.flac

Training

F0 Quantizer Model

To train F0 quantizer model, use the following command:

python -m torch.distributed.launch --nproc_per_node 8 train_f0_vq.py \
--checkpoint_path checkpoints/lj_f0_vq \
--config configs/LJSpeech/f0_vqvae.json

Set to the number of availalbe GPUs on your machine.

Resynthesis Model

To train a resynthesis model, use the following command:

python -m torch.distributed.launch --nproc_per_node <NUM_GPUS> train.py \
--checkpoint_path checkpoints/lj_vqvae \
--config configs/LJSpeech/vqvae256_lut.json

Supported Configurations

Currently, we support the following training schemes:

Dataset SSL Method Dictionary Size Config Path
LJSpeech HuBERT 100 configs/LJSpeech/hubert100_lut.json
LJSpeech CPC 100 configs/LJSpeech/cpc100_lut.json
LJSpeech VQVAE 256 configs/LJSpeech/vqvae256_lut.json
VCTK HuBERT 100 configs/VCTK/hubert100_lut.json
VCTK CPC 100 configs/VCTK/cpc100_lut.json
VCTK VQVAE 256 configs/VCTK/vqvae256_lut.json

Inference

To generate, simply run:

python inference.py \
--checkpoint_file checkpoints/vctk_cpc100 \
-n 10 \
--output_dir generations

To synthesize multiple speakers:

python inference.py \
--checkpoint_file checkpoints/vctk_cpc100 \
-n 10 \
--vc \
--input_code_file datasets/VCTK/cpc100/test.txt \
--output_dir generations_multispkr

You can also generate with codes from a different dataset:

python inference.py \
--checkpoint_file checkpoints/lj_cpc100 \
-n 10 \
--input_code_file datasets/VCTK/cpc100/test.txt \
--output_dir generations_vctk_to_lj

Preprocessing New Datasets

CPC / HuBERT Coding

To quantize new datasets with CPC or HuBERT follow the instructions described in the GSLM code.

To parse CPC output:

python scripts/parse_cpc_codes.py \
--manifest cpc_output_file \
--wav-root wav_root_dir \
--outdir parsed_cpc

To parse HuBERT output:

python parse_hubert_codes.py \
--codes hubert_output_file \
--manifest hubert_tsv_file \
--outdir parsed_hubert 

VQVAE Coding

First, you will need to download LibriLight dataset and move it to data/LibriLight.

For VQVAE, train a vqvae model using the following command:

python -m torch.distributed.launch --nproc_per_node <NUM_GPUS> train.py \
--checkpoint_path checkpoints/ll_vq \
--config configs/LibriLight/vqvae256.json

To extract VQVAE codes:

python infer_vqvae_codes.py \
--input_dir folder_with_wavs_to_code \
--output_dir vqvae_output_folder \
--checkpoint_file checkpoints/ll_vq

To parse VQVAE output:

 python parse_vqvae_codes.py \
 --manifest vqvae_output_file \
 --outdir parsed_vqvae

License

You may find out more about the license here.

Citation

@inproceedings{polyak21_interspeech,
  author={Adam Polyak and Yossi Adi and Jade Copet and 
          Eugene Kharitonov and Kushal Lakhotia and 
          Wei-Ning Hsu and Abdelrahman Mohamed and Emmanuel Dupoux},
  title={{Speech Resynthesis from Discrete Disentangled Self-Supervised Representations}},
  year=2021,
  booktitle={Proc. Interspeech 2021},
}

Acknowledgements

This implementation uses code from the following repos: HiFi-GAN and Jukebox, as described in our code.

Automatic library of congress classification, using word embeddings from book titles and synopses.

Automatic Library of Congress Classification The Library of Congress Classification (LCC) is a comprehensive classification system that was first deve

Ahmad Pourihosseini 3 Oct 01, 2022
Revisiting Global Statistics Aggregation for Improving Image Restoration

Revisiting Global Statistics Aggregation for Improving Image Restoration Xiaojie Chu, Liangyu Chen, Chengpeng Chen, Xin Lu Paper: https://arxiv.org/pd

MEGVII Research 128 Dec 24, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
Simple ray intersection library similar to coldet - succedeed by libacc

Ray Intersection This project offers a header only acceleration structure library including implementations for a BVH- and KD-Tree. Applications may i

Nils Moehrle 29 Jun 23, 2022
CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection

CLOCs is a novel Camera-LiDAR Object Candidates fusion network. It provides a low-complexity multi-modal fusion framework that improves the performance of single-modality detectors. CLOCs operates on

Su Pang 254 Dec 16, 2022
The code from the paper Character Transformations for Non-Autoregressive GEC Tagging

Character Transformations for Non-Autoregressive GEC Tagging Milan Straka, Jakub Náplava, Jana Straková Charles University Faculty of Mathematics and

ÚFAL 5 Dec 10, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Progressive Image Deraining Networks: A Better and Simpler Baseline

Progressive Image Deraining Networks: A Better and Simpler Baseline [arxiv] [pdf] [supp] Introduction This paper provides a better and simpler baselin

190 Dec 01, 2022
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
3D-Transformer: Molecular Representation with Transformer in 3D Space

3D-Transformer: Molecular Representation with Transformer in 3D Space

55 Dec 19, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It ca

OSU DKI Lab 76 Dec 21, 2022
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023
This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom Binding Challenge

UmojaHack-Africa-2022-African-Snake-Antivenom-Binding-Challenge This is the second place solution for : UmojaHack Africa 2022: African Snake Antivenom

Mami Mokhtar 10 Dec 03, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
NAACL'2021: Factual Probing Is [MASK]: Learning vs. Learning to Recall

OptiPrompt This is the PyTorch implementation of the paper Factual Probing Is [MASK]: Learning vs. Learning to Recall. We propose OptiPrompt, a simple

Princeton Natural Language Processing 150 Dec 20, 2022
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022