Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

Overview

ETSformer - Pytorch

Implementation of ETSformer, state of the art time-series Transformer, in Pytorch

Install

$ pip install etsformer-pytorch

Usage

import torch
from etsformer_pytorch import ETSFormer

model = ETSFormer(
    time_features = 4,
    model_dim = 512,                # in paper they use 512
    embed_kernel_size = 3,          # kernel size for 1d conv for input embedding
    layers = 2,                     # number of encoder and corresponding decoder layers
    heads = 8,                      # number of exponential smoothing attention heads
    K = 4,                          # num frequencies with highest amplitude to keep (attend to)
    dropout = 0.2                   # dropout (in paper they did 0.2)
)

timeseries = torch.randn(1, 1024, 4)

pred = model(timeseries, num_steps_forecast = 32) # (1, 32, 4) - (batch, num steps forecast, num time features)

For using ETSFormer for classification, using cross attention pooling on all latents and level output

import torch
from etsformer_pytorch import ETSFormer, ClassificationWrapper

etsformer = ETSFormer(
    time_features = 1,
    model_dim = 512,
    embed_kernel_size = 3,
    layers = 2,
    heads = 8,
    K = 4,
    dropout = 0.2
)

adapter = ClassificationWrapper(
    etsformer = etsformer,
    dim_head = 32,
    heads = 16,
    dropout = 0.2,
    level_kernel_size = 5,
    num_classes = 10
)

timeseries = torch.randn(1, 1024)

logits = adapter(timeseries) # (1, 10)

Citation

@misc{woo2022etsformer,
    title   = {ETSformer: Exponential Smoothing Transformers for Time-series Forecasting}, 
    author  = {Gerald Woo and Chenghao Liu and Doyen Sahoo and Akshat Kumar and Steven Hoi},
    year    = {2022},
    eprint  = {2202.01381},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
Comments
  • What are your thoughts on using latents for additional classification task

    What are your thoughts on using latents for additional classification task

    Hi! I was wondering if you have thought about aggregating seasonal and growth latents for additional tasks (for example classification)? What are the possible ways to bring latents into single feature vector in your opinion? The easiest one would be just get the mean along layers and time dimensions but that seams to be too naive. Another idea I had it to use Cross Attention mechanic with single time query key to aggregate latents:

    all_latents = torch.cat([latent_growths, latent_seasonals], dim=-1)
    all_latents = rearrange(all_latents, 'b n l d -> (b l) n d')
    # q = nn.Parameter(torch.randn(all_latents_dim))
    q = repeat(q, 'd -> b 1 d', b = all_latents.shape[0])
    agg_latent = cross_attention(query=q, context=all_latents)
    agg_latent = rearrange(all_latents, '(b l) n d -> b (l n) d')
    agg_latent = agg_latent.mean(dim=1) # may be we should have done it before cross attention?
    

    Would be great to hear your thoughts

    opened by inspirit 15
  • Pre LayerNorm might be required for k,v?

    Pre LayerNorm might be required for k,v?

    https://github.com/lucidrains/ETSformer-pytorch/blob/2561053007e919409b3255eb1d0852c68799d24f/etsformer_pytorch/etsformer_pytorch.py#L440

    In my early tests I see some instability in training results, I was wondering if it might be good idea to LayerNorm latents before constructing key and values?

    opened by inspirit 5
  • growth_term calculation error

    growth_term calculation error

    https://github.com/lucidrains/ETSformer-pytorch/blob/e1d8514b44d113ead523aa6307986833e68eecc5/etsformer_pytorch/etsformer_pytorch.py#L233-L235

    It looks like you are not using growth and growth_smoothing_weightsto calculate growth_term

    opened by inspirit 4
  • Backward gradient error

    Backward gradient error

    Hello,

    i was trying to run the provided class and see following error: Function ScatterBackward0 returned an invalid gradient at index 1 - got [64, 4, 128] but expected shape compatible with [64, 33, 128]

    model = ETSFormer(
                time_features = 9,
                model_dim = 128,
                embed_kernel_size = 3,
                layers = 2,
                heads = 4,
                K = 4,
                dropout = 0.2
            )
    

    input = torch.rand(64, 64, 9) x = model(input, num_steps_forecast = 16)

    opened by inspirit 3
  • Does ETS-Former allow adding features

    Does ETS-Former allow adding features

    @lucidrains Thanks for making the code of the model available!

    In your paper, you state that the model infers seasonal patterns itself, so that there is no need to add time features like week, month, etc.

    Still, to increase the applicability of your approach, does the current implementation allow to add any (time-invariant and time-varying) features, e.g., categorical or numeric?

    opened by StatMixedML 2
  • wrong order of arguments

    wrong order of arguments

    https://github.com/lucidrains/ETSformer-pytorch/blob/2e0d465576c15fc8d84c4673f93fdd71d45b799c/etsformer_pytorch/etsformer_pytorch.py#L327

    you pass latents on wrong order to Level module: according to forward method first should be growth and then seasonal

    opened by inspirit 1
  • Clarification regarding data pre-processing

    Clarification regarding data pre-processing

    Hello,

    I was trying to run the ETSformer for ETT dataset. The paper mentions that the dataset is split as 60/20/20 for train, validation and test. Could you give some insight as to how the dataset split is happening in the code.

    Thank you.

    opened by vageeshmaiya 2
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
A fast python implementation of Ray Tracing in One Weekend using python and Taichi

ray-tracing-one-weekend-taichi A fast python implementation of Ray Tracing in One Weekend using python and Taichi. Taichi is a simple "Domain specific

157 Dec 26, 2022
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
pip install python-office

🍬 python for office 👉 http://www.python4office.cn/ 👈 🌎 English Documentation 📚 简介 Python-office 是一个 Python 自动化办公第三方库,能解决大部分自动化办公的问题。而且每个功能只需一行代码,

程序员晚枫 272 Dec 29, 2022
Elevation Mapping on GPU.

Elevation Mapping cupy Overview This is a ros package of elevation mapping on GPU. Code are written in python and uses cupy for GPU calculation. * pla

Robotic Systems Lab - Legged Robotics at ETH Zürich 183 Dec 19, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
Neural Point-Based Graphics

Neural Point-Based Graphics Project   Video   Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3

Ali Aliev 252 Dec 13, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
Finding Donors for CharityML

Finding-Donors-for-CharityML - Investigated factors that affect the likelihood of charity donations being made based on real census data.

Moamen Abdelkawy 1 Dec 30, 2021
We propose a new method for effective shadow removal by regarding it as an exposure fusion problem.

Auto-exposure fusion for single-image shadow removal We propose a new method for effective shadow removal by regarding it as an exposure fusion proble

Qing Guo 146 Dec 31, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
Transformer in Computer Vision

Transformer-in-Vision A paper list of some recent Transformer-based CV works. If you find some ignored papers, please open issues or pull requests. **

506 Dec 26, 2022
Bravia core script for python

Bravia-Core-Script You need to have a mandatory account If this L3 does not work, try another L3. enjoy

5 Dec 26, 2021
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
A Model for Natural Language Attack on Text Classification and Inference

TextFooler A Model for Natural Language Attack on Text Classification and Inference This is the source code for the paper: Jin, Di, et al. "Is BERT Re

Di Jin 418 Dec 16, 2022
Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Pytorch implementation of MaskGIT: Masked Generative Image Transformer

Dominic Rampas 247 Dec 16, 2022
SimulLR - PyTorch Implementation of SimulLR

PyTorch Implementation of SimulLR There is an interesting work[1] about simultan

11 Dec 22, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022