Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

Overview

ConvNeXt-TF

This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras models that have been populated with the original ConvNeXt pre-trained weights available from [2]. These models are not blackbox SavedModels i.e., they can be fully expanded into tf.keras.Model objects and one can call all the utility functions on them (example: .summary()).

As of today, all the TensorFlow / Keras variants of the models listed here are available in this repository except for the isotropic ones. This list includes the ImageNet-1k as well as ImageNet-21k models.

Refer to the "Using the models" section to get started. Additionally, here's a related blog post that jots down my experience.

Conversion

TensorFlow / Keras implementations are available in models/convnext_tf.py. Conversion utilities are in convert.py.

Models

The converted models are available on TF-Hub.

There should be a total of 15 different models each having two variants: classifier and feature extractor. You can load any model and get started like so:

import tensorflow as tf

model_gcs_path = "gs://tfhub-modules/sayakpaul/convnext_tiny_1k_224/1/uncompressed"
model = tf.keras.models.load_model(model_gcs_path)
print(model.summary(expand_nested=True))

The model names are interpreted as follows:

  • convnext_large_21k_1k_384: This means that the model was first pre-trained on the ImageNet-21k dataset and was then fine-tuned on the ImageNet-1k dataset. Resolution used during pre-training and fine-tuning: 384x384. large denotes the topology of the underlying model.
  • convnext_large_1k_224: Means that the model was pre-trained on the ImageNet-1k dataset with a resolution of 224x224.

Results

Results are on ImageNet-1k validation set (top-1 accuracy).

name original [email protected] keras [email protected]
convnext_tiny_1k_224 82.1 81.312
convnext_small_1k_224 83.1 82.392
convnext_base_1k_224 83.8 83.28
convnext_base_1k_384 85.1 84.876
convnext_large_1k_224 84.3 83.844
convnext_large_1k_384 85.5 85.376
convnext_base_21k_1k_224 85.8 85.364
convnext_base_21k_1k_384 86.8 86.79
convnext_large_21k_1k_224 86.6 86.36
convnext_large_21k_1k_384 87.5 87.504
convnext_xlarge_21k_1k_224 87.0 86.732
convnext_xlarge_21k_1k_384 87.8 87.68

Differences in the results are primarily because of the differences in the library implementations especially how image resizing is implemented in PyTorch and TensorFlow. Results can be verified with the code in i1k_eval. Logs are available at this URL.

Using the models

Pre-trained models:

Randomly initialized models:

from models.convnext_tf import get_convnext_model

convnext_tiny = get_convnext_model()
print(convnext_tiny.summary(expand_nested=True))

To view different model configurations, refer here.

Upcoming (contributions welcome)

  • Align layer initializers (useful if someone wanted to train the models from scratch)
  • Allow the models to accept arbitrary shapes (useful for downstream tasks)
  • Convert the isotropic models as well
  • Fine-tuning notebook (thanks to awsaf49)
  • Off-the-shelf-classification notebook
  • Publish models on TF-Hub

References

[1] ConvNeXt paper: https://arxiv.org/abs/2201.03545

[2] Official ConvNeXt code: https://github.com/facebookresearch/ConvNeXt

Acknowledgements

Owner
Sayak Paul
ML Engineer at @carted | One PR at a time
Sayak Paul
Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages"

Prabhupadavani: A Code-mixed Speech Translation Data for 25 languages Code for the paper titled "Prabhupadavani: A Code-mixed Speech Translation Data

Ayush Daksh 12 Dec 01, 2022
Portfolio analytics for quants, written in Python

QuantStats: Portfolio analytics for quants QuantStats Python library that performs portfolio profiling, allowing quants and portfolio managers to unde

Ran Aroussi 2.7k Jan 08, 2023
Utility code for use with PyXLL

pyxll-utils There is no need to use this package as of PyXLL 5. All features from this package are now provided by PyXLL. If you were using this packa

PyXLL 10 Dec 18, 2021
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022
[ACM MM 2019 Oral] Cycle In Cycle Generative Adversarial Networks for Keypoint-Guided Image Generation

Contents Cycle-In-Cycle GANs Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Acknowledgments Relat

Hao Tang 67 Dec 14, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network.

face-mask-detection Face Mask Detection is a project to determine whether someone is wearing mask or not, using deep neural network. It contains 3 scr

amirsalar 13 Jan 18, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation".

Prompt-Based Multi-Modal Image Segmentation This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation". The sys

Timo Lüddecke 305 Dec 30, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022