Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks
Overview
Owner
GANs in Action
Official code of paper: MovingFashion: a Benchmark for the Video-to-Shop Challenge
SEAM Match-RCNN Official code of MovingFashion: a Benchmark for the Video-to-Shop Challenge paper Installation Requirements: Pytorch 1.5.1 or more rec
The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"
Swin-Unet The codes for the work "Swin-Unet: Unet-like Pure Transformer for Medical Image Segmentation"(https://arxiv.org/abs/2105.05537). A validatio
Fast image augmentation library and an easy-to-use wrapper around other libraries
Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc
Relative Uncertainty Learning for Facial Expression Recognition
Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API
FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.
Python scripts for performing lane detection using the LSTR model in ONNX
ONNX LSTR Lane Detection Python scripts for performing lane detection using the Lane Shape Prediction with Transformers (LSTR) model in ONNX. Requirem
Container : Context Aggregation Network
Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"
Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se
PyTorch Implement for Path Attention Graph Network
SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!
Official Chainer implementation of GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral)
GP-GAN: Towards Realistic High-Resolution Image Blending (ACMMM 2019, oral) [Project] [Paper] [Demo] [Related Work: A2RL (for Auto Image Cropping)] [C
Accurate Phylogenetic Inference with Symmetry-Preserving Neural Networks
Accurate Phylogenetic Inference with a Symmetry-preserving Neural Network Model Claudia Solis-Lemus Shengwen Yang Leonardo Zepeda-Núñez This repositor
LRBoost is a scikit-learn compatible approach to performing linear residual based stacking/boosting.
LRBoost is a sckit-learn compatible package for linear residual boosting. LRBoost combines a linear estimator and a non-linear estimator to leverage t
Deep Latent Force Models
Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona
Code to reproduce the results for Compositional Attention
Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se
Code for reproducible experiments presented in KSD Aggregated Goodness-of-fit Test.
Code for KSDAgg: a KSD aggregated goodness-of-fit test This GitHub repository contains the code for the reproducible experiments presented in our pape
Optimizing Deeper Transformers on Small Datasets
DT-Fixup Optimizing Deeper Transformers on Small Datasets Paper published in ACL 2021: arXiv Detailed instructions to replicate our results in the pap
Huawei Hackathon 2021 - Sweden (Stockholm)
huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend
Depth image based mouse cursor visual haptic
Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati