Nsdf: A mesh SDF with just some code we can directly paste into our raymarcher

Related tags

Deep Learningnsdf
Overview

imgs/bunny.png

nsdf

Representing SDFs of arbitrary meshes has been a bit tricky so far. Expressing the mesh SDF as a combination of simpler analytical SDFs is usually not possible, but we could either use pre-computed SDF 3D textures or use acceleration structures with triangle mesh directly. The downside with those is that they're not as plug-and-play as analytical SDFs, because you need to push additional data to the shader (which is not really possible in something like Shadertoy). Wouldn't it be cool to have a way of representing a mesh SDF with just some code we can directly paste into our raymarcher, as we do with simple analytical SDFs?

Over the past few years, another promising option for representing SDFs of arbitrary meshes came to existence - neural approximations of SDFs (let's call them nsdfs):

Are these nsdfs usable outside of "lab"? The networks described in the papers are either too big (millions of parameters) to be represented purely in code, or require additional 3d textures as inputs (again millions of parameters). So, can we make them into copy-pastable distance functions which are usable in Shadertoy? Yes, yes we can:

imgs/dragon_big_loop.gif

See in action on Shadertoy

This is a quite large nsdf of Stanford dragon running in Shadertoy, at ~25fps on 3080RTX in 640x360 resolution. Not perfect, but not bad at all.

The nsdf function in shader looks something like this:

float nsdf(vec3 x) {
    vec4 x_e_0 = mat3x4(vec4(-0.6761706471443176, -0.5204018950462341, -0.725279688835144, 0.6860896944999695), vec4(0.4600033164024353, 2.345594644546509, 0.4790898859500885, -1.7588382959365845), vec4(0.0854012668132782, 0.11334510892629623, 1.3206489086151123, 1.0468124151229858)) * x * 5.0312042236328125;vec4 x_0_0 = sin(x_e_0);vec4 x_0_12 = cos(x_e_0);vec4 x_e_1 = mat3x4(vec4(-1.151658296585083, 0.3811194896697998, -1.270230770111084, -0.28512871265411377), vec4(-0.4783991575241089, 1.5332365036010742, -1.1580479145050049, -0.038533274084329605), vec4(1.764098882675171, -0.8132078647613525, 0.607886552810669, -0.9051652550697327)) .....
)

The second line continues for much, much longer and it would take up most of the space on this README.

imgs/monkey_big_loop.gif

There's actually no magic to make it work, it's enough to just train a smaller network with fourier features as inputs.

Surprisingly (not!), the smaller the network, the lower the detail of the resulting model (but on the flip side, the model looks more stylized):

  • 32 fourier features, 2 hidden layers of 16 neurons
  • should work in real time on most modern-ish gpus

imgs/bunny_small_loop.gif

  • 64 fourier features, 2 hidden layers of 64 neurons
  • 3080RTX can still run this at 60FPS at 640x360)
  • Note that it takes a few seconds to compile the shader

imgs/bunny_normal_loop.gif

  • 96 fourier features, 1 hidden layer of 96 neurons
  • ~25 fps at 640x360 on 3080RTX
  • Note that it can take tens of seconds to compile the shader

imgs/bunny_big_loop.gif

Using sigmoid as activation function

Replacing ReLU with Sigmoid as the activation function makes the model produce SDF with smoother, but less detailed surface.

imgs/bunny_normal_smooth_loop.gif

Generating your own nsdf

To generate your own nsdf, you first have to train a nsdf model:

python train.py $YOUR_MESH_FILE --output $OUTPUT_MODEL_FILE --model_size {small, normal, bigly}

Once the model is trained, you can generate GLSL nsdf function:

python generate_glsl.py $OUTPUT_MODEL_FILE

Then you can just copy-paste the generated code into your raymarcher.

WARNING: The "bigly" models can crash your browser if your gpu is not enough.

Setup

Following pip packages are required for training:

mesh-to-sdf
numpy
torch
trimesh

(you can just run pip install -r requirements.txt)

Notes:

  • The nsdf function is defined only in [-1, 1] cube, you have to handle evaluation outside of that range.
  • Related to above, I handle evaluating outside [-1, 1] cube by first checking for distance to the unit cube itself, and only after reaching that cube, nsdf is used. This has positive performance impact, so keep that in mind when reading FPS numbers above.
  • For smaller models, it might be the best to train multiple models and select the best one since there's visible variance in the quality.
Owner
Jan Ivanecky
Jan Ivanecky
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
Learning to Segment Instances in Videos with Spatial Propagation Network

Learning to Segment Instances in Videos with Spatial Propagation Network This paper is available at the 2017 DAVIS Challenge website. Check our result

Jingchun Cheng 145 Sep 28, 2022
Project for music generation system based on object tracking and CGAN

Project for music generation system based on object tracking and CGAN The project was inspired by MIDINet: A Convolutional Generative Adversarial Netw

1 Nov 21, 2021
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
Planning from Pixels in Environments with Combinatorially Hard Search Spaces -- NeurIPS 2021

PPGS: Planning from Pixels in Environments with Combinatorially Hard Search Spaces Environment Setup We recommend pipenv for creating and managing vir

Autonomous Learning Group 11 Jun 26, 2022
MMGeneration is a powerful toolkit for generative models, based on PyTorch and MMCV.

Documentation: https://mmgeneration.readthedocs.io/ Introduction English | 简体中文 MMGeneration is a powerful toolkit for generative models, especially f

OpenMMLab 1.3k Dec 29, 2022
mlpack: a scalable C++ machine learning library --

a fast, flexible machine learning library Home | Documentation | Doxygen | Community | Help | IRC Chat Download: current stable version (3.4.2) mlpack

mlpack 4.2k Jan 09, 2023
PyTorch implementation of the ideas presented in the paper Interaction Grounded Learning (IGL)

Interaction Grounded Learning This repository contains a simple PyTorch implementation of the ideas presented in the paper Interaction Grounded Learni

Arthur Juliani 4 Aug 31, 2022
UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac protocols on unmanned aerial vehicle networks.

UAV-Networks Simulator - Autonomous Networking - A.A. 20/21 UAV-Networks-Routing is a Python simulator for experimenting routing algorithms and mac pr

0 Nov 13, 2021
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
STEM: An approach to Multi-source Domain Adaptation with Guarantees

STEM: An approach to Multi-source Domain Adaptation with Guarantees Introduction This is the official implementation of ``STEM: An approach to Multi-s

5 Dec 19, 2022
Distributed Arcface Training in Pytorch

Distributed Arcface Training in Pytorch

3 Nov 23, 2021
Code implementation for the paper 'Conditional Gaussian PAC-Bayes'.

CondGauss This repository contains PyTorch code for the paper Stochastic Gaussian PAC-Bayes. A novel PAC-Bayesian training method is implemented. Ther

0 Nov 01, 2021
Official Repository for our ICCV2021 paper: Continual Learning on Noisy Data Streams via Self-Purified Replay

Continual Learning on Noisy Data Streams via Self-Purified Replay This repository contains the official PyTorch implementation for our ICCV2021 paper.

Jinseo Jeong 22 Nov 23, 2022
Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

Rianne van den Berg 172 Dec 13, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022