QMagFace: Simple and Accurate Quality-Aware Face Recognition

Related tags

Deep LearningQMagFace
Overview

Quality-Aware Face Recognition

26.11.2021 start readme

QMagFace: Simple and Accurate Quality-Aware Face Recognition

Table of Contents

Abstract

Face recognition systems have to deal with large variabilities (such as different poses, illuminations, and expressions) that might lead to incorrect matching decisions. These variabilities can be measured in terms of face image quality which is defined over the utility of a sample for recognition. Previous works on face recognition either do not employ this valuable information or make use of noninherently fit quality estimates. In this work, we propose a simple and effective face recognition solution (QMag- Face) that combines a quality-aware comparison score with a recognition model based on a magnitude-aware angular margin loss. The proposed approach includes modelspecific face image qualities in the comparison process to enhance the recognition performance under unconstrained circumstances. Exploiting the linearity between the qualities and their comparison scores induced by the utilized loss, our quality-aware comparison function is simple and highly generalizable. The experiments conducted on several face recognition databases and benchmarks demonstrate that the introduced quality-awareness leads to consistent improvements in the recognition performance. Moreover, the proposed QMagFace approach performs especially well under challenging circumstances, such as crosspose, cross-age, or cross-quality. Consequently, it leads to state-of-the-art performances on several face recognition benchmarks, such as 98.50% on AgeDB, 83.97% on XQLFQ, and 98.74% on CFP-FP.

Results

The proposed approach is analysed in three steps. First, we report the performance of QMagFace on six face recognition benchmarks against ten recent state-of-the-art methods in image- and video-based recognition tasks to provide a comprehensive comparison with state-of-the-art. Second, we investigate the face recognition performance of QMagFace over a wide FMR range to show its suitability for a wide variety of applications and to demonstrate that the quality-aware comparison score constantly enhances the recognition performance. Third, we analyse the optimal quality weight over a wide threshold range to demonstrate the robustness of the training process and the generalizability of the proposed approach.

In the following, we will only show some results. For more details and dicussions, please take a look at the paper.

Performance on face recognition benchmarks - The face recognition performance on the four benchmarks is reported in terms of benchmark accuracy (%). The highest performance is marked bold. The proposed approach, QMagFace-100, achieves state-of-the-art face recognition performance, especially in cross-age (AgeDB), cross-pose (CFP-FP), and cross-quality (XQLFW) scenarios. Since the FIQ captures these challenging conditions and the quality values represent the utility of the images for our specific network, the proposed quality-aware comparison score can specifically address the circumstance and their effect on the network. Consequently, it performs highly accurate in the cross-age, cross-pose, and cross-quality scenarios and achieves state-of-the-art performances.

Face recognition performance over a wide range of FMRs - The face recognition performance is reported in terms of FNMR [%] over a wide range of FMRs. The MagFace and the proposed QMagFace approach are compared for three backbone architectures on three databases. The better values between both approaches are highlighted in bold. In general, the proposed quality-aware solutions constantly improve the performance, often by a large margin. This is especially true for QMagFace based on the iResNet-100 backbone.

Robustness analysis - The optimal quality weight for different decision thresholds is reported on four databases. Training on different databases lead to similar linear solutions for the quality-weighting function. The results demonstrate that (a) the choice of a linear function is justified and (b) that the learned models have a high generalizability since the quality-weighting function trained on one database is very similar to the optimal functions of the others.

Installation

To be done soon

Citing

If you use this code, please cite the following paper.

@article{QMagFace,
  author    = {Philipp Terh{\"{o}}rst and
               Malte Ihlefeld and
               Marco Huber and
               Naser Damer and
               Florian Kirchbuchner and
               Kiran Raja and
               Arjan Kuijper},
  title     = {{QMagFace}: Simple and Accurate Quality-Aware Face Recognition},
  journal   = {CoRR},
  volume    = {abs/2111.13475},
  year      = {2021},
  url       = {https://arxiv.org/abs/2111.13475},
  eprinttype = {arXiv},
  eprint    = {2111.13475},
}

If you make use of our implementation based on MagFace, please additionally cite the original MagFace module.

Acknowledgement

This research work has been funded by the German Federal Ministry of Education and Research and the Hessen State Ministry for Higher Education, Research and the Arts within their joint support of the National Research Center for Applied Cybersecurity ATHENE. Portions of the research in this paper use the FERET database of facial images collected under the FERET program, sponsored by the DOD Counterdrug Technology Development Program Office. This work was carried out during the tenure of an ERCIM ’Alain Bensoussan‘ Fellowship Programme.

License

This project is licensed under the terms of the Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license. Copyright (c) 2021 Fraunhofer Institute for Computer Graphics Research IGD Darmstadt

Owner
Philipp Terhörst
Philipp Terhörst
The audio-video synchronization of MKV Container Format is exploited to achieve data hiding

The audio-video synchronization of MKV Container Format is exploited to achieve data hiding, where the hidden data can be utilized for various management purposes, including hyper-linking, annotation

Maxim Zaika 1 Nov 17, 2021
A stock generator that assess a list of stocks and returns the best stocks for investing and money allocations based on users choices of volatility, duration and number of stocks

Stock-Generator Please visit "Stock Generator.ipynb" for a clearer view and "Stock Generator.py" for scripts. The stock generator is designed to allow

jmengnyay 1 Aug 02, 2022
DeepOBS: A Deep Learning Optimizer Benchmark Suite

DeepOBS - A Deep Learning Optimizer Benchmark Suite DeepOBS is a benchmarking suite that drastically simplifies, automates and improves the evaluation

Aaron Bahde 7 May 12, 2020
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
Implementation of Shape and Electrostatic similarity metric in deepFMPO.

DeepFMPO v3D Code accompanying the paper "On the value of using 3D-shape and electrostatic similarities in deep generative methods". The paper can be

34 Nov 28, 2022
Implementation for Paper "Inverting Generative Adversarial Renderer for Face Reconstruction"

StyleGAR TODO: add arxiv link Implementation of Inverting Generative Adversarial Renderer for Face Reconstruction TODO: for test Currently, some model

155 Oct 27, 2022
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models Jonathan Ho, Ajay Jain, Pieter Abbeel Paper: https://arxiv.org/abs/2006.11239 Website: https://hojonathanho.g

Jonathan Ho 1.5k Jan 08, 2023
No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency

This repository contains the implementation for the paper: No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consiste

Alireza Golestaneh 75 Dec 30, 2022
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Python 3 module to print out long strings of text with intervals of time inbetween

Python-Fastprint Python 3 module to print out long strings of text with intervals of time inbetween Install: pip install fastprint Sync Usage: from fa

Kainoa Kanter 2 Jun 27, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
Python based framework for Automatic AI for Regression and Classification over numerical data.

Python based framework for Automatic AI for Regression and Classification over numerical data. Performs model search, hyper-parameter tuning, and high-quality Jupyter Notebook code generation.

BlobCity, Inc 141 Dec 21, 2022
PyTorch and GPyTorch implementation of the paper "Conditioning Sparse Variational Gaussian Processes for Online Decision-making."

Conditioning Sparse Variational Gaussian Processes for Online Decision-making This repository contains a PyTorch and GPyTorch implementation of the pa

Wesley Maddox 16 Dec 08, 2022
Multi-view 3D reconstruction using neural rendering. Unofficial implementation of UNISURF, VolSDF, NeuS and more.

Volume rendering + 3D implicit surface Showcase What? previous: surface rendering; now: volume rendering previous: NeRF's volume density; now: implici

Jianfei Guo 682 Jan 04, 2023
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory

Awesome Machine Learning Jupyter Notebooks for Google Colaboratory A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook

Carlos Toxtli 245 Jan 01, 2023