Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

Overview

One Thing One Click

One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021)

Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

This code is based on PointGroup https://github.com/llijiang/PointGroup

Authors: Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu

Installation

Requirements

  • Python 3.7.0
  • Pytorch 1.3.0
  • CUDA 10.1

Virtual Environment

conda create -n pointgroup python==3.7
source activate pointgroup

Install PointGroup

(1) Clone the PointGroup repository.

git clone https://github.com/liuzhengzhe/One-Thing-One-Click --recursive 
cd One-Thing-One-Click

(2) Install the dependent libraries.

pip install -r requirements.txt
conda install -c bioconda google-sparsehash 

(3) For the SparseConv, we apply the implementation of spconv. The repository is recursively downloaded at step (1). We use the version 1.0 of spconv.

Note: The author of PointGroup further modified spconv\spconv\functional.py to make grad_output contiguous. Make sure you use our modified spconv.

  • To compile spconv, firstly install the dependent libraries.
conda install libboost
conda install -c daleydeng gcc-5 # need gcc-5.4 for sparseconv

Add the $INCLUDE_PATH$ that contains boost in lib/spconv/CMakeLists.txt. (Not necessary if it could be found.)

include_directories($INCLUDE_PATH$)
  • Compile the spconv library.
cd lib/spconv
python setup.py bdist_wheel
  • Run cd dist and use pip to install the generated .whl file.

(4) Compile the pointgroup_ops library.

cd lib/pointgroup_ops
python setup.py develop

If any header files could not be found, run the following commands.

python setup.py build_ext --include-dirs=$INCLUDE_PATH$
python setup.py develop

$INCLUDE_PATH$ is the path to the folder containing the header files that could not be found.

Data Preparation

  • Download the ScanNet v2 dataset.

  • Put the data in the corresponding folders.

  • Put the file scannetv2-labels.combined.tsv in the data/ folder.

  • Change the path in prepare_data_otoc.py Line 20.

cd data/
python prepare_data_otoc.py 
  • Split the generated files into the data/train_weakly and data/val_weakly folders according to the ScanNet v2 train/val split.

Pretrained Model

We provide a pretrained model trained on ScanNet v2 dataset. Download it here. Its performance on ScanNet v2 validation set is 71.94 mIoU.

Inference and Evaluation

(1) 3D U-Net Evaluation

set the data_root in config/pointgroup_run1_scannet.yaml

cd 3D-U-Net
python test.py --config config/pointgroup_run1_scannet.yaml --pretrain pointgroup_run1_scannet-000001250.pth

Its performance on ScanNet v2 validation set is 68.96 mIoU.

(2) Relation Net Evaluation

cd relation
python test.py --config config/pointgroup_run1_scannet.yaml --pretrain pointgroup_run1_scannet-000002891_weight.pth

(3) Overall Evaluation

cd merge
python test.py --config config/pointgroup_run1_scannet.yaml

Self Training

(1) Train 3D U-Net

set the data_root/dataset in config/pointgroup_run1_scannet.yaml

cd 3D-U-Net
CUDA_VISIBLE_DEVICES=0 python train.py --config config/pointgroup_run1_scannet.yaml 

(2) Generate features and predictions of 3D U-Net

CUDA_VISIBLE_DEVICES=0 python test_train.py --config config/pointgroup_run1_scannet.yaml --pretrain $PATH_TO_THE_MODEL$.pth

(3) Train Relation Net

set the data_root/dataset in config/pointgroup_run1_scannet.yaml

cd relation
CUDA_VISIBLE_DEVICES=0 python train.py --config config/pointgroup_run1_scannet.yaml 

(4) Generate features and predictions of Relation Net

CUDA_VISIBLE_DEVICES=0 python test_train.py --config config/pointgroup_run1_scannet.yaml --pretrain $PATH_TO_THE_MODEL$_weight.pth

(5) Merge the Results via Graph Propagation

cd merge
CUDA_VISIBLE_DEVICES=0 python test_train.py --config config/pointgroup_run1_scannet.yaml

(6) Repeat from (1) to (5) for self-training for 3 to 5 times

Acknowledgement

This repo is built upon several repos, e.g., PointGrouop, SparseConvNet, spconv and ScanNet.

Contact

If you have any questions or suggestions about this repo, please feel free to contact me ([email protected]).

This is a Python Module For Encryption, Hashing And Other stuff

EnroCrypt This is a Python Module For Encryption, Hashing And Other Basic Stuff You Need, With Secure Encryption And Strong Salted Hashing You Can Do

5 Sep 15, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
FluxTraining.jl gives you an endlessly extensible training loop for deep learning

A flexible neural net training library inspired by fast.ai

86 Dec 31, 2022
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling Introduction Contrastive learning approaches have achieved great success in

VITA 24 Dec 17, 2022
A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning.

Open3DSOT A general python framework for single object tracking in LiDAR point clouds, based on PyTorch Lightning. The official code release of BAT an

Kangel Zenn 172 Dec 23, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs

SMORE: Knowledge Graph Completion and Multi-hop Reasoning in Massive Knowledge Graphs SMORE is a a versatile framework that scales multi-hop query emb

Google Research 135 Dec 27, 2022
ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs

ConE: Cone Embeddings for Multi-Hop Reasoning over Knowledge Graphs This is the code of paper ConE: Cone Embeddings for Multi-Hop Reasoning over Knowl

MIRA Lab 33 Dec 07, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Retina blood vessel segmentation with a convolutional neural network

Retina blood vessel segmentation with a convolution neural network (U-net) This repository contains the implementation of a convolutional neural netwo

Orobix 1.2k Jan 06, 2023
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

jemmy li 121 Sep 26, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
GANsformer: Generative Adversarial Transformers Drew A

GANformer: Generative Adversarial Transformers Drew A. Hudson* & C. Lawrence Zitnick Update: We released the new GANformer2 paper! *I wish to thank Ch

Drew Arad Hudson 1.2k Jan 02, 2023
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies project page paper demo video Prerequisites Important Notes We suspect there are bugs i

54 Dec 06, 2022
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022