Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

Overview

One Thing One Click

One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021)

Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

This code is based on PointGroup https://github.com/llijiang/PointGroup

Authors: Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu

Installation

Requirements

  • Python 3.7.0
  • Pytorch 1.3.0
  • CUDA 10.1

Virtual Environment

conda create -n pointgroup python==3.7
source activate pointgroup

Install PointGroup

(1) Clone the PointGroup repository.

git clone https://github.com/liuzhengzhe/One-Thing-One-Click --recursive 
cd One-Thing-One-Click

(2) Install the dependent libraries.

pip install -r requirements.txt
conda install -c bioconda google-sparsehash 

(3) For the SparseConv, we apply the implementation of spconv. The repository is recursively downloaded at step (1). We use the version 1.0 of spconv.

Note: The author of PointGroup further modified spconv\spconv\functional.py to make grad_output contiguous. Make sure you use our modified spconv.

  • To compile spconv, firstly install the dependent libraries.
conda install libboost
conda install -c daleydeng gcc-5 # need gcc-5.4 for sparseconv

Add the $INCLUDE_PATH$ that contains boost in lib/spconv/CMakeLists.txt. (Not necessary if it could be found.)

include_directories($INCLUDE_PATH$)
  • Compile the spconv library.
cd lib/spconv
python setup.py bdist_wheel
  • Run cd dist and use pip to install the generated .whl file.

(4) Compile the pointgroup_ops library.

cd lib/pointgroup_ops
python setup.py develop

If any header files could not be found, run the following commands.

python setup.py build_ext --include-dirs=$INCLUDE_PATH$
python setup.py develop

$INCLUDE_PATH$ is the path to the folder containing the header files that could not be found.

Data Preparation

  • Download the ScanNet v2 dataset.

  • Put the data in the corresponding folders.

  • Put the file scannetv2-labels.combined.tsv in the data/ folder.

  • Change the path in prepare_data_otoc.py Line 20.

cd data/
python prepare_data_otoc.py 
  • Split the generated files into the data/train_weakly and data/val_weakly folders according to the ScanNet v2 train/val split.

Pretrained Model

We provide a pretrained model trained on ScanNet v2 dataset. Download it here. Its performance on ScanNet v2 validation set is 71.94 mIoU.

Inference and Evaluation

(1) 3D U-Net Evaluation

set the data_root in config/pointgroup_run1_scannet.yaml

cd 3D-U-Net
python test.py --config config/pointgroup_run1_scannet.yaml --pretrain pointgroup_run1_scannet-000001250.pth

Its performance on ScanNet v2 validation set is 68.96 mIoU.

(2) Relation Net Evaluation

cd relation
python test.py --config config/pointgroup_run1_scannet.yaml --pretrain pointgroup_run1_scannet-000002891_weight.pth

(3) Overall Evaluation

cd merge
python test.py --config config/pointgroup_run1_scannet.yaml

Self Training

(1) Train 3D U-Net

set the data_root/dataset in config/pointgroup_run1_scannet.yaml

cd 3D-U-Net
CUDA_VISIBLE_DEVICES=0 python train.py --config config/pointgroup_run1_scannet.yaml 

(2) Generate features and predictions of 3D U-Net

CUDA_VISIBLE_DEVICES=0 python test_train.py --config config/pointgroup_run1_scannet.yaml --pretrain $PATH_TO_THE_MODEL$.pth

(3) Train Relation Net

set the data_root/dataset in config/pointgroup_run1_scannet.yaml

cd relation
CUDA_VISIBLE_DEVICES=0 python train.py --config config/pointgroup_run1_scannet.yaml 

(4) Generate features and predictions of Relation Net

CUDA_VISIBLE_DEVICES=0 python test_train.py --config config/pointgroup_run1_scannet.yaml --pretrain $PATH_TO_THE_MODEL$_weight.pth

(5) Merge the Results via Graph Propagation

cd merge
CUDA_VISIBLE_DEVICES=0 python test_train.py --config config/pointgroup_run1_scannet.yaml

(6) Repeat from (1) to (5) for self-training for 3 to 5 times

Acknowledgement

This repo is built upon several repos, e.g., PointGrouop, SparseConvNet, spconv and ScanNet.

Contact

If you have any questions or suggestions about this repo, please feel free to contact me ([email protected]).

Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023
MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet.

Lightweight-Detection-and-KD MMdet2-based reposity about lightweight detection model: Nanodet, PicoDet. This repo also includes detection knowledge di

Egqawkq 12 Jan 05, 2023
Package for extracting emotions from social media text. Tailored for financial data.

EmTract: Extracting Emotions from Social Media Text Tailored for Financial Contexts EmTract is a tool that extracts emotions from social media text. I

13 Nov 17, 2022
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
official code for dynamic convolution decomposition

Revisiting Dynamic Convolution via Matrix Decomposition (ICLR 2021) A pytorch implementation of DCD. If you use this code in your research please cons

Yunsheng Li 110 Nov 23, 2022
Full body anonymization - Realistic Full-Body Anonymization with Surface-Guided GANs

Realistic Full-Body Anonymization with Surface-Guided GANs This is the official

Håkon Hukkelås 30 Nov 18, 2022
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
H&M Fashion Image similarity search with Weaviate and DocArray

H&M Fashion Image similarity search with Weaviate and DocArray This example shows how to do image similarity search using DocArray and Weaviate as Doc

Laura Ham 18 Aug 11, 2022
DenseNet Implementation in Keras with ImageNet Pretrained Models

DenseNet-Keras with ImageNet Pretrained Models This is an Keras implementation of DenseNet with ImageNet pretrained weights. The weights are converted

Felix Yu 568 Oct 31, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
Continuous Security Group Rule Change Detection & Response at scale

Introduction Get notified of Security Group Changes across all AWS Accounts & Regions in an AWS Organization, with the ability to respond/revert those

Raajhesh Kannaa Chidambaram 3 Aug 13, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
AI Virtual Calculator: This is a simple virtual calculator based on Artificial intelligence.

AI Virtual Calculator: This is a simple virtual calculator that works with gestures using OpenCV. We will use our hand in the air to click on the calc

Md. Rakibul Islam 1 Jan 13, 2022
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
offical implement of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021

LifelongReID Offical implementation of our Lifelong Person Re-Identification via Adaptive Knowledge Accumulation in CVPR2021 by Nan Pu, Wei Chen, Yu L

PeterPu 76 Dec 08, 2022
这是一个facenet-pytorch的库,可以用于训练自己的人脸识别模型。

Facenet:人脸识别模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 预测步骤 How2predict 训练步骤 How2train 参考资料 Reference 性能情况 训练数据

Bubbliiiing 210 Jan 06, 2023
Relaxed-machines - explorations in neuro-symbolic differentiable interpreters

Relaxed Machines Explorations in neuro-symbolic differentiable interpreters. Baby steps: inc_stop Libraries JAX Haiku Optax Resources Chapter 3 (∂4: A

Nada Amin 6 Feb 02, 2022
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021