Code for "NeRS: Neural Reflectance Surfaces for Sparse-View 3D Reconstruction in the Wild," in NeurIPS 2021

Related tags

Deep Learningners
Overview

Code for Neural Reflectance Surfaces (NeRS)

[arXiv] [Project Page] [Colab Demo] [Bibtex]

This repo contains the code for NeRS: Neural Reflectance Surfaces.

The code was tested with the following dependencies:

  • Python 3.8.6
  • Pytorch 1.7.0
  • Pytorch3d 0.4.0
  • CUDA 11.0

Installation

Setup

We recommend using conda to manage dependencies. Make sure to install a cudatoolkit compatible with your GPU.

git clone [email protected]:jasonyzhang/ners.git
conda create -n ners python=3.8
cond activate pytorch3d
conda install -c pytorch pytorch=1.7.0 torchvision cudatoolkit=11.0
pip install -r requirements.txt

Installing Pytorch3d

Here, we list the recommended steps for installing Pytorch3d. Refer to the official installation directions for troubleshooting and additional details.

mkdir -p external
git clone https://github.com/facebookresearch/pytorch3d.git external/pytorch3d
cd external/pytorch3d
conda install -c conda-forge -c fvcore -c iopath fvcore iopath
conda install -c bottler nvidiacub
python setup.py install

If you need to compile for multiple architectures (e.g. Turing for 2080TI and Maxwell for 1080TI), you can pass the architectures as an environment variable, i.e. TORCH_CUDA_ARCH_LIST="Maxwell;Pascal;Turing;Volta" python setup.py install.

If you get a warning about the default C/C++ compiler on your machine, you should compile Pytorch3D using the same compiler that your pytorch installation uses, likely gcc/g++. Try: CC=gcc CXX=g++ python setup.py install.

Acquiring Object Masks

To get object masks, we recommend using PointRend for COCO classes or GrabCut for other categories.

If using GrabCut, you can try this interactive segmentation tool.

Running the Code

Running on MVMC

Coming Soon!

Running on Your Own Objects

We recommend beginning with the demo notebook so that you can visualize the intermediate outputs. The demo notebook generates the 3D reconstruction and illumination prediction for the espresso machine (data included). You can also run the demo script:

python main.py --instance-dir data/espresso --symmetrize --export-mesh --predict-illumination

We also provide a Colab notebook that runs on a single GPU. Note that the Colab demo does not include the view-dependent illumination prediction. At the end of the demo, you can view the turntable NeRS rendering and download the generated mesh as an obj.

To run on your own objects, you will need to acquire images and masks. See data/espresso for an example of the expected directory structure.

We also provide the images and masks for all objects in the paper. All objects except hydrant and robot should have a --symmetrize flag.

gdown  https://drive.google.com/uc?id=1JWuofTIlcLJmmzYtZYM2SvZVizJCcOU_
unzip -f misc_objects.zip -d data

Citing NeRS

If you use find this code helpful, please consider citing:

@inproceedings{zhang2021ners,
  title={{NeRS}: Neural Reflectance Surfaces for Sparse-view 3D Reconstruction in the Wild},
  author={Zhang, Jason Y. and Yang, Gengshan and Tulsiani, Shubham and Ramanan, Deva},
  booktitle={Conference on Neural Information Processing Systems},
  year={2021}
}
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Sundararaman 76 Dec 06, 2022
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
Monocular Depth Estimation - Weighted-average prediction from multiple pre-trained depth estimation models

merged_depth runs (1) AdaBins, (2) DiverseDepth, (3) MiDaS, (4) SGDepth, and (5) Monodepth2, and calculates a weighted-average per-pixel absolute dept

Pranav 39 Nov 21, 2022
Joint detection and tracking model named DEFT, or ``Detection Embeddings for Tracking.

DEFT: Detection Embeddings for Tracking DEFT: Detection Embeddings for Tracking, Mohamed Chaabane, Peter Zhang, J. Ross Beveridge, Stephen O'Hara

Mohamed Chaabane 253 Dec 18, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
Official Pytorch implementation for "End2End Occluded Face Recognition by Masking Corrupted Features, TPAMI 2021"

End2End Occluded Face Recognition by Masking Corrupted Features This is the Pytorch implementation of our TPAMI 2021 paper End2End Occluded Face Recog

Haibo Qiu 25 Oct 31, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Official codebase used to develop Vision Transformer, MLP-Mixer, LiT and more.

Big Vision This codebase is designed for training large-scale vision models on Cloud TPU VMs. It is based on Jax/Flax libraries, and uses tf.data and

Google Research 701 Jan 03, 2023
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022