Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Overview

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

The implementation of Reducing Infromation Bottleneck for Weakly Supervised Semantic Segmentation, Jungbeom Lee, Jooyoung Choi, Jisoo Mok, and Sungroh Yoon, NeurIPS 2021. [[paper]]

outline

outline

Abstract

Weakly supervised semantic segmentation produces pixel-level localization from class labels; however, a classifier trained on such labels is likely to focus on a small discriminative region of the target object. We interpret this phenomenon using the information bottleneck principle: the final layer of a deep neural network, activated by the sigmoid or softmax activation functions, causes an information bottleneck, and as a result, only a subset of the task-relevant information is passed on to the output. We first support this argument through a simulated toy experiment and then propose a method to reduce the information bottleneck by removing the last activation function. In addition, we introduce a new pooling method that further encourages the transmission of information from non-discriminative regions to the classification. Our experimental evaluations demonstrate that this simple modification significantly improves the quality of localization maps on both the PASCAL VOC 2012 and MS COCO 2014 datasets, exhibiting a new state-of-the-art performance for weakly supervised semantic segmentation.

Installation

  • We kindly refer to the offical implementation of IRN.

Usage

Step 1. Prepare Dataset

  • Download Pascal VOC dataset here.

  • Download MS COCO images from the official COCO website here.

  • Download semantic segmentation annotations for the MS COCO dataset here.

  • Directory hierarchy

    Dataset
    ├── VOC2012_SEG_AUG       # unzip VOC2012_SEG_AUG.zip           
    ├── coco_2017             # mkdir coco_2017
    │   ├── coco_seg_anno     # included in coco_annotations_semantic.zip
    └── └── JPEGImages        # include train and val images downloaded from the official COCO website

Step 2. Prepare pre-trained classifier

  • Pre-trained model used in this paper: Pascal VOC, MS COCO.
  • You can also train your own classifiers following IRN.

Step 3. Generate and evaluate the pseudo ground-truth masks for PASCAL VOC and MS COCO

  • PASCAL VOC
bash get_pseudo_gt_VOC.sh
  • MS COCO
bash get_pseudo_gt_COCO.sh

Step 4. Train a semantic segmentation network

Acknowledgment

This code is heavily borrowed from IRN, thanks jiwoon-ahn!

Owner
Jungbeom Lee
Jungbeom Lee
Speech Recognition using DeepSpeech2.

deepspeech.pytorch Implementation of DeepSpeech2 for PyTorch using PyTorch Lightning. The repo supports training/testing and inference using the DeepS

Sean Naren 2k Jan 04, 2023
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
Unofficial Implementation of MLP-Mixer, Image Classification Model

MLP-Mixer Unoffical Implementation of MLP-Mixer, easy to use with terminal. Train and test easly. https://arxiv.org/abs/2105.01601 MLP-Mixer is an arc

Oğuzhan Ercan 6 Dec 05, 2022
Companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsura et al.

META-RS This is the companion code for the paper "Meta-Learning the Search Distribution of Black-Box Random Search Based Adversarial Attacks" by Yatsu

Bosch Research 7 Dec 09, 2022
Finding all things on-prem Microsoft for password spraying and enumeration.

msprobe About Installing Usage Examples Coming Soon Acknowledgements About Finding all things on-prem Microsoft for password spraying and enumeration.

205 Jan 09, 2023
A simple python library for fast image generation of people who do not exist.

Random Face A simple python library for fast image generation of people who do not exist. For more details, please refer to the [paper](https://arxiv.

Sergei Belousov 170 Dec 15, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
🐸STT integration examples

🐸 STT 0.9.x Examples These are various examples on how to use or integrate 🐸 STT using our packages. It is a good way to just try out 🐸 STT before

coqui 92 Dec 19, 2022
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
Predict multi paths to a moving person depending on his trajectory history.

Multi-future Trajectory Prediction The project is about using the Multiverse model to make possible multible-future trajectory prediction for a seen p

Said Gamal 1 Jan 18, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
Warning: This project does not have any current developer. See bellow.

Pylearn2: A machine learning research library Warning : This project does not have any current developer. We will continue to review pull requests and

Laboratoire d’Informatique des Systèmes Adaptatifs 2.7k Dec 26, 2022
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
Pytorch implementation of Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization https://arxiv.org/abs/2008.11646

[TCSVT] Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization LPN [Paper] NEWs Prerequisites Python 3.6 GPU Memory = 8G Numpy 1.

46 Dec 14, 2022
Real-Time Multi-Contact Model Predictive Control via ADMM

Here, you can find the code for the paper 'Real-Time Multi-Contact Model Predictive Control via ADMM'. Code is currently being cleared up and optimize

17 Dec 28, 2022