PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

Related tags

Deep Learningd2c
Overview

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation

Project | Paper

Open In Collab

PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

Abhishek Sinha*, Jiaming Song*, Chenlin Meng, Stefano Ermon

Stanford University

Overview

Conditional generative models of high-dimensional images have many applications, but supervision signals from conditions to images can be expensive to acquire. This paper describes Diffusion-Decoding models with Contrastive representations (D2C), a paradigm for training unconditional variational autoencoders (VAEs) for few-shot conditional image generation. By learning from as few as 100 labeled examples, D2C can be used to generate images with a certain label or manipulate an existing image to contain a certain label. Compared with state-of-the-art StyleGAN2 methods, D2C is able to manipulate certain attributes efficiently while keeping the other details intact.

Here are some example for image manipulation. You can see more results here.

Attribute Original D2C StyleGAN2 NVAE DDIM
Blond
Red Lipstick
Beard

Getting started

The code has been tested on PyTorch 1.9.1 (CUDA 10.2).

To use the checkpoints, download the checkpoints from this link, under the checkpoints/ directory.

# Requires gdown >= 4.2.0, install with pip
gdown https://drive.google.com/drive/u/1/folders/1DvApt-uO3uMRhFM3eIqPJH-HkiEZC1Ru -O ./ --folder

Examples

The main.py file provides some basic scripts to perform inference on the checkpoints.

We will release training code soon on a separate repo, as the GPU memory becomes a bottleneck if we train the model jointly.

Example to perform image manipulation:

  • Red lipstick
python main.py ffhq_256 manipulation --d2c_path checkpoints/ffhq_256/model.ckpt --boundary_path checkpoints/ffhq_256/red_lipstick.ckpt --step 10 --image_dir images/red_lipstick --save_location results/red_lipstick
  • Beard
python main.py ffhq_256 manipulation --d2c_path checkpoints/ffhq_256/model.ckpt --boundary_path checkpoints/ffhq_256/beard.ckpt --step 20 --image_dir images/beard --save_location results/beard
  • Blond
python main.py ffhq_256 manipulation --d2c_path checkpoints/ffhq_256/model.ckpt --boundary_path checkpoints/ffhq_256/blond.ckpt --step -15 --image_dir images/blond --save_location results/blond

Example to perform unconditional image generation:

python main.py ffhq_256 sample_uncond --d2c_path checkpoints/ffhq_256/model.ckpt --skip 100 --save_location results/uncond_samples

Extensions

We implement a D2C class here that contains an autoencoder and a diffusion latent model. See code structure here.

Useful functions include: image_to_latent, latent_to_image, sample_latent, manipulate_latent, postprocess_latent, which are also called in main.py.

Todo

  • Release checkpoints and models for other datasets.
  • Release code for conditional generation.
  • Release training code and procedure to convert into inference model.
  • Train on higher resolution images.

References and Acknowledgements

If you find this repository useful for your research, please cite our work.

@inproceedings{sinha2021d2c,
  title={D2C: Diffusion-Denoising Models for Few-shot Conditional Generation},
  author={Sinha*, Abhishek and Song*, Jiaming and Meng, Chenlin and Ermon, Stefano},
  year={2021},
  month={December},
  abbr={NeurIPS 2021},
  url={https://arxiv.org/abs/2106.06819},
  booktitle={Neural Information Processing Systems},
  html={https://d2c-model.github.io}
}

This implementation is based on:

Owner
Jiaming Song
PhD @ Stanford CS. My Chinese name is Jiaming Song (宋佳铭). I also go by the name Tony.
Jiaming Song
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
Single Red Blood Cell Hydrodynamic Traps Via the Generative Design

Rbc-traps-generative-design - The generative design for single red clood cell hydrodynamic traps using GEFEST framework

Natural Systems Simulation Lab 4 Jun 16, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations.

Pyserini Pyserini is a Python toolkit for reproducible information retrieval research with sparse and dense representations. Retrieval using sparse re

Castorini 706 Dec 29, 2022
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer)

Computational modelling of ray propagation through optical elements using the principles of geometric optics (Ray Tracer) Introduction By applying the

Son Gyo Jung 1 Jul 09, 2022
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022
Implementation of ICCV21 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers

Implementation of ICCV 2021 paper: PnP-DETR: Towards Efficient Visual Analysis with Transformers arxiv This repository is based on detr Recently, DETR

twang 113 Dec 27, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Koltun"

Learning to propose objects This implements the learning and inference/proposal algorithm described in "Learning to Propose Objects, Krähenbühl and Ko

Philipp Krähenbühl 90 Sep 10, 2021
UPSNet: A Unified Panoptic Segmentation Network

UPSNet: A Unified Panoptic Segmentation Network Introduction UPSNet is initially described in a CVPR 2019 oral paper. Disclaimer This repository is te

Uber Research 622 Dec 26, 2022
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
Image Captioning using CNN ,LSTM and Attention

Image Captioning using CNN ,LSTM and Attention This is a deeplearning model which tries to summarize an image into a text . Installation Install this

ASUTOSH GHANTO 1 Dec 16, 2021
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

A repository built on the Flow software package to explore cyber-security attacks on intelligent transportation systems.

George Gunter 4 Nov 14, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python

Autonomous Ground Vehicle Navigation and Control Simulation Examples in Python THIS PROJECT IS CURRENTLY A WORK IN PROGRESS AND THUS THIS REPOSITORY I

Joshua Marshall 14 Dec 31, 2022