Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

Related tags

Deep LearningASWS
Overview

This codebase is being actively maintained, please create and issue if you have issues using it

Basics

All data files are included under losses and each folder. The main Augmented Shapiro-Wilk Stopping criterion is implemented in analysis.py, along with several helper functions and wrappers. The other comparison heuristics are also included in analysis.py, along with their wrappers. grapher.py contains all the code for generating the graphs used in the paper, and earlystopping_calculator.py includes code for generating tables and calculating some statistics from the data. hyperparameter_search.py contains all the code used to execute the grid-search on the ASWS method, along with the grid-search for the other heuristics.

Installing

If you would like to try our code, just run pip3 install git+https://github.com/justinkterry/ASWS

Example

If you wanted to try to determine the ASWS stopping point of a model, you can do so using the analysis.py file. If at anypoint during model training you wanted to perform the stop criterion test, you can do

from ASWS.analysis import aswt_stopping

test_acc = [] # for storing model accuracies
for i in training_epochs:

    model.train()
    test_accuracy = model.evaluate(test_set)
    test_acc.append(test_accuracy)
    gamma = 0.5 # fill hyperparameters as desired
    num_data = 20
    slack_prop=0.1
    count = 20

    if len(test_acc) > count:
        aswt_stop_criterion = aswt_stopping(test_acc, gamma, count, num_data, slack_prop=slack_prop)

        if aswt_stop_criterion:
            print("Stop Training")

and if you already have finished training the model and wanted to determine the ASWS stopping point, you would need a CSV with columns Epoch, Training Loss, Training Acc, Test Loss, Test Acc. You could then use the following example

from ASWS.analysis import get_aswt_stopping_point_of_model, read_file

_, _, _, test_acc = read_file("modelaccuracy.csv")
gamma = 0.5 # fill hyperparameters as desired
num_data = 20
slack_prop=0.1
count = 20

stop_epoch, stop_accuracy = get_aswt_stopping_point_of_model(test_acc, gamma=gamma, num_data=num_data, count=count, slack_prop=slack_prop)

pytorch-training

The pytorch-training folder contains the driver file for training each model, along with the model files which contain each network definition. The main.py file can be run out of the box for the models listed in the paper. The model to train is specified via the --model argument. All learning rate schedulers listed in the paper are available (via --schedule step etc.) and the ASWS learning rate scheduler is available via --schedule ASWT . The corresponding ASWS hyperparameters are passed in at the command line (for example --gamma 0.5).

Example

In order to recreate the GoogLeNet ASWT 1 scheduler from the paper, you can use the following command

python3 main.py --model GoogLeNet --schedule ASWT --gamma 0.76 --num_data 19 --slack_prop 0.05 --lr 0.1

Owner
J K Terry
CS PhD student at UMD, founder of Swarm Labs, maintainer of Gym and PettingZoo. I work in deep reinforcement learning.
J K Terry
Research using Cirq!

ReCirq Research using Cirq! This project contains modules for running quantum computing applications and experiments through Cirq and Quantum Engine.

quantumlib 230 Dec 29, 2022
Apply AnimeGAN-v2 across frames of a video clip

title emoji colorFrom colorTo sdk app_file pinned AnimeGAN-v2 For Videos 🔥 blue red gradio app.py false AnimeGAN-v2 For Videos Apply AnimeGAN-v2 acro

Nathan Raw 36 Oct 18, 2022
Code for Multimodal Neural SLAM for Interactive Instruction Following

Code for Multimodal Neural SLAM for Interactive Instruction Following Code structure The code is adapted from E.T. and most training as well as data p

7 Dec 07, 2022
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.

SOLO: Segmenting Objects by Locations This project hosts the code for implementing the SOLO algorithms for instance segmentation. SOLO: Segmenting Obj

Xinlong Wang 1.5k Dec 31, 2022
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
Authors implementation of LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant self-at

35 Oct 18, 2022
Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition

Efficient Conformer: Progressive Downsampling and Grouped Attention for Automatic Speech Recognition Official implementation of the Efficient Conforme

Maxime Burchi 145 Dec 30, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
Iran Open Source Hackathon

Iran Open Source Hackathon is an open-source hackathon (duh) with the aim of encouraging participation in open-source contribution amongst Iranian dev

OSS Hackathon 121 Dec 25, 2022
CaLiGraph Ontology as a Challenge for Semantic Reasoners ([email protected]'21)

CaLiGraph for Semantic Reasoning Evaluation Challenge This repository contains code and data to use CaLiGraph as a benchmark dataset in the Semantic R

Nico Heist 0 Jun 08, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
A Genetic Programming platform for Python with TensorFlow for wicked-fast CPU and GPU support.

Karoo GP Karoo GP is an evolutionary algorithm, a genetic programming application suite written in Python which supports both symbolic regression and

Kai Staats 149 Jan 09, 2023
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Junjie Hu 13 Dec 10, 2022