An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Overview

Stitching Historical Aerial Photos

badge DOI

The Story

In a centuries-old library at the University of Oxford, millions of aerial photographs taken in the final decades of the British Empire may help us prepare for a potential 21st-century calamity: an exodus of people driven by climate change to places that are more livable — but politically inhospitable.

Our team is studying how climate change might set off mass migrations around the world, and looking back to history for inspiration. These century-old photos, some of which taken by the British Royal Air Force, are key to this analysis because they could reveal how populations responded to natural disasters in the past — specifically, a series of extreme droughts that plagued Africa, and hurricanes that wreaked havoc in the Caribbean islands. There were such little census or survey data back then, and the earliest record of satellite images started only in the 1970s. Apart from these boxes and boxes of black-and-white photos, scholars trying to study historical mass migrations have almost nothing to work with; but now, with modern computer vision and machine learning techniques, we can paint a complete picture of human settlement patterns and how they respond to extreme weather events.

One of the first challenges in working with historical aerial photos is that it is difficult to georeference them (assigning the images to the geographical location that they cover). Unlike modern satellite imagery, historical images are not georeferenced at the time when they are collected, and the ways that experts record their locations can be pretty crude. Usually, they roughly outline the areas that the aerial photos cover by hand, and mark the image identifier numbers on them. As you can imagine, these hand-drawn maps tend to be inaccurate, and more importantly, georeferencing aerial photos solely based on hand-drawn maps is labor-intensive and quickly becomes impossible as the number of aerial photos grows. Other commercially available software such as Photoshop and OpenCV succeeded in automatically stitching a small number of images (<100), but failed miserably when scaled up.

Figure: An example sortie plot. Source: NCAP.

ExampleSortiePlot

In this project, I led a research team to develop an efficient and scalable data pipeline to digitize, process, stitch and georeference historical aerial photos; extract building footprints and road networks with deep learning models; and trace the changes in human settlement patterns over time. This repo contains codes for the image stitching process.

The Idea

We break this problem down to two steps -

  1. Given a pair of two images that overlap with each other, how do we overlay them? We take advantage of established methods in the computer vision literature - using SURF to detect features and RANSAC to estimate transformations from matched feature points robustly. These techniques were originally developed for panorama image stitching and work well in our context. This part of the codes is implemented mostly with opencv.

surf-ransac

  1. If we see all the images of interest as a graph (with each node being an image, and each edge being a relative transformation between a pair of images), how do we go from a collection of pairwise relationships to the absolute positions of all the images? We develop a "joint optimization" routine, which creates a differentiable loss given all the pairwise matches that are available, and uses back propagation to compute gradients and optimizes with Adam. This part of the codes is implemented mostly with pytorch. (No GPUs required for running the codes.)

joint-optim

Source of the demo image: Historical England.

Play with our demo.ipynb!

In this repo, we release a simplified version of our core codebase. For legal reasons, we cannot share raw historical photos or sortie plots publicly; so we provide a "toy example" for demonstration. In practice, our codebase can handle complex scenes with tens of thousands of images. Play with our interactive demo in demo.ipynb! You can change the initialization positions for all the images, but they will always find their way back to each other.

To play with our demo, run

docker pull luna983/stitch-aerial-photos:latest
docker run -p 8888:8888 luna983/stitch-aerial-photos:latest

go to http://localhost:8888/?token=[REPLACE WITH TOKEN SHOWN] in a web browser, and open up demo.ipynb to start exploring!

demo

Note that the SURF functions are not included in the free OpenCV distributions (so pip install opencv-python would not be sufficient); the docker image contains a version of OpenCV compiled specifically for that environment.

You might also like...
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates
DeepMetaHandles: Learning Deformation Meta-Handles of 3D Meshes with Biharmonic Coordinates

DeepMetaHandles (CVPR2021 Oral) [paper] [animations] DeepMetaHandles is a shape deformation technique. It learns a set of meta-handles for each given

Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture
Compute descriptors for 3D point cloud registration using a multi scale sparse voxel architecture

MS-SVConv : 3D Point Cloud Registration with Multi-Scale Architecture and Self-supervised Fine-tuning Compute features for 3D point cloud registration

A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper
PyTorch reimplementation of the Smooth ReLU activation function proposed in the paper "Real World Large Scale Recommendation Systems Reproducibility and Smooth Activations" [arXiv 2022].

Smooth ReLU in PyTorch Unofficial PyTorch reimplementation of the Smooth ReLU (SmeLU) activation function proposed in the paper Real World Large Scale

A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018
PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition, CVPR 2018

PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

This is a Pytorch implementation of the paper: Self-Supervised Graph Transformer on Large-Scale Molecular Data.

A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild"

VSPW: A Large-scale Dataset for Video Scene Parsing in the Wild A pytorch implementation of the CVPR2021 paper "VSPW: A Large-scale Dataset for Video

Releases(v1.1)
  • v1.1(Aug 31, 2020)

    Two bug fixes from v1.0 for the docker environment

    1. src/optim.py: a float32 tensor was parsed as a float64 tensor in the docker environment
    2. src/graph.py: graph building relies on tuple indices; this is fixed by adding a new method that is agnostic to index types
    Source code(tar.gz)
    Source code(zip)
Owner
Luna Yue Huang
Economist + Data Scientist
Luna Yue Huang
Exploring Versatile Prior for Human Motion via Motion Frequency Guidance (3DV2021)

Exploring Versatile Prior for Human Motion via Motion Frequency Guidance [Video Demo] [Paper] Installation Requirements Python 3.6 PyTorch 1.1.0 Pleas

Jiachen Xu 19 Oct 28, 2022
Frigate - NVR With Realtime Object Detection for IP Cameras

A complete and local NVR designed for HomeAssistant with AI object detection. Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras.

Blake Blackshear 6.4k Dec 31, 2022
Face Identity Disentanglement via Latent Space Mapping [SIGGRAPH ASIA 2020]

Face Identity Disentanglement via Latent Space Mapping Description Official Implementation of the paper Face Identity Disentanglement via Latent Space

150 Dec 07, 2022
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?”

This repository accompanies our paper “Do Prompt-Based Models Really Understand the Meaning of Their Prompts?” Usage To replicate our results in Secti

Albert Webson 64 Dec 11, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
Object detection on multiple datasets with an automatically learned unified label space.

Simple multi-dataset detection An object detector trained on multiple large-scale datasets with a unified label space; Winning solution of E

Xingyi Zhou 407 Dec 30, 2022
This is an official implementation for "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" on Semantic Segmentation.

Swin Transformer for Semantic Segmentation of satellite images This repo contains the supported code and configuration files to reproduce semantic seg

23 Oct 10, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

line scanning repository This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza

Jurjen Heij 4 Sep 14, 2022
Assginment for UofT CSC420: Intro to Image Understanding

Run the code Open edge_detection.ipynb in google colab. Upload image1.jpg,image2.jpg and my_image.jpg to '/content/drive/My Drive'. chooose 'Run all'

Ziyi-Zhou 1 Feb 24, 2022
ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN

ADGAN - The Implementation of paper Controllable Person Image Synthesis with Attribute-Decomposed GAN CVPR 2020 (Oral); Pose and Appearance Attributes Transfer;

Men Yifang 400 Dec 29, 2022
Machine Unlearning with SISA

Machine Unlearning with SISA Lucas Bourtoule, Varun Chandrasekaran, Christopher Choquette-Choo, Hengrui Jia, Adelin Travers, Baiwu Zhang, David Lie, N

CleverHans Lab 70 Jan 01, 2023
Efficient Speech Processing Tookit for Automatic Speaker Recognition

Sugar Efficient Speech Processing Tookit for Automatic Speaker Recognition | HuggingFace | What's New EfficientTDNN: Efficient Architecture Search for

WangRui 14 Sep 14, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022