Implementation of "Adversarial purification with Score-based generative models", ICML 2021

Related tags

Text Data & NLPadp
Overview

Adversarial Purification with Score-based Generative Models

by Jongmin Yoon, Sung Ju Hwang, Juho Lee

This repository includes the official PyTorch implementation of our paper:

Adversarial Purification with Score-based Generative Models

Jongmin Yoon, Sung Ju Hwang, Juho Lee

the 38th International Conference for Machine Learning (ICML 2021)

ArXiv: https://arxiv.org/abs/2106.06041

What does our work do?

We propose a method that gives adversarial robustness to a neural network model against (stochastic) adversarial attacks by using an Energy-based Model (EBM) trained with Denoising Score Matching (DSM), which is called Adversarial denosing purification (ADP).

Running Codes

Dependency

Run the following command to install some necessary python packages to run our code.

pip install -r requirements.txt

Running code

To run the experiments with adp.py or adp_decision.py, enter the following command.

python main.py --config <config-file>

For example, we provide the example configuration file configs/cifar10_bpda_eot_sigma025_eot15.yml in the repository.

Attack and defense

For adversarial attacks, the classifier PGD attack and BPDA+EOT attack are implemented in attacks/clf_pgd.py and attacks/bpda_strong.py, respectively. At the configuration file, setting the attack.attack_method into clf_pgd or bpda_strong will run these attacks, respectively. For defense, we implemented the main ADP algorithm and ADP after detecting adversarial examples (Appendix F.) in purification/adp.py and purification/adp_decision.py, respectively.

Main components

File name Explanation
main.py Execute the main code, with initializing configurations and loggers.
runners/empirical.py Attacks and purifies the image to show empirical adversarial robustness.
attacks/bpda_strong.py Code for BPDA+EOT attack.
purification/adp.py Code for adversarial purification.
ncsnv2/* Code for training the EBM, i.e., NCSNv2 (paper, code).
networks/* Code for used classifier network architectures.
utils/* Utility files.

Notes

  • For the configuration files, we use the pixel ranges [0, 255] for the perturbation scale attack.ptb and the one-step attack scale attack.alpha. And the main experiments are performed within the pixel range [0, 1] after being rescaled during execution.
  • For training the EBM and classifier models, we primarily used the pre-existing methods such as NCSNv2 and WideResNet classifier. Here is the repository we used for training the WideResNet classifier. Nevertheless, other classifiers, such as the pre-trained adversarially robust classifier implemented in here can be used.

Reference

If you find our work useful for your research, please consider citing this.

@inproceedings{
yoon2021advpur,
title={Adversarial Purification with Score-based Generative Models},
author={Jongmin Yoon and Sung Ju Hwang and Juho Lee},
booktitle={Proceedings of The 38th International Conference on Machine Learning (ICML 2021)},
year={2021},
}

Contact

For further details, please contact [email protected].

License

MIT

Simple program that translates the name of files into English

Simple program that translates the name of files into English. Useful for when editing/inspecting programs that were developed in a foreign language.

0 Dec 22, 2021
This repository contains all the source code that is needed for the project : An Efficient Pipeline For Bloom’s Taxonomy Using Natural Language Processing and Deep Learning

Pipeline For NLP with Bloom's Taxonomy Using Improved Question Classification and Question Generation using Deep Learning This repository contains all

Rohan Mathur 9 Jul 17, 2021
Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Dé op-de-vlucht Pieton vertaler. Wereldwijd gebruikt door meer dan 1.000+ succesvolle bedrijven!

Lau 1 Dec 17, 2021
A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation This is a Pytorch implementation for the "Chimera" paper Learning Shared Semant

Chi Han 43 Dec 28, 2022
Weakly-supervised Text Classification Based on Keyword Graph

Weakly-supervised Text Classification Based on Keyword Graph How to run? Download data Our dataset follows previous works. For long texts, we follow C

Hello_World 20 Dec 29, 2022
Material for GW4SHM workshop, 16/03/2022.

GW4SHM Workshop Wednesday, 16th March 2022 (13:00 – 15:15 GMT): Presented by: Dr. Rhodri Nelson, Imperial College London Project website: https://www.

Devito Codes 1 Mar 16, 2022
Sentello is python script that simulates the anti-evasion and anti-analysis techniques used by malware.

sentello Sentello is a python script that simulates the anti-evasion and anti-analysis techniques used by malware. For techniques that are difficult t

Malwation 62 Oct 02, 2022
BiQE: Code and dataset for the BiQE paper

BiQE: Bidirectional Query Embedding This repository includes code for BiQE and the datasets introduced in Answering Complex Queries in Knowledge Graph

Bhushan Kotnis 1 Oct 20, 2021
chaii - hindi & tamil question answering

chaii - hindi & tamil question answering This is the solution for rank 5th in Kaggle competition: chaii - Hindi and Tamil Question Answering. The comp

abhishek thakur 33 Dec 18, 2022
This repository contains (not all) code from my project on Named Entity Recognition in philosophical text

NERphilosophy 👋 Welcome to the github repository of my BsC thesis. This repository contains (not all) code from my project on Named Entity Recognitio

Ruben 1 Jan 27, 2022
A relatively simple python program to generate one of those reddit text to speech videos dominating youtube.

Reddit text to speech generator A basic reddit tts video generator Current functionality Generate videos for subs based on comments,(askreddit) so rea

Aadvik 17 Dec 19, 2022
Fast, DB Backed pretrained word embeddings for natural language processing.

Embeddings Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning. Instead of lo

Victor Zhong 212 Nov 21, 2022
Document processing using transformers

Doc Transformers Document processing using transformers. This is still in developmental phase, currently supports only extraction of form data i.e (ke

Vishnu Nandakumar 13 Dec 21, 2022
Tutorial to pretrain & fine-tune a 🤗 Flax T5 model on a TPUv3-8 with GCP

Pretrain and Fine-tune a T5 model with Flax on GCP This tutorial details how pretrain and fine-tune a FlaxT5 model from HuggingFace using a TPU VM ava

Gabriele Sarti 41 Nov 18, 2022
NLP, Machine learning

Netflix-recommendation-system NLP, Machine learning About Recommendation algorithms are at the core of the Netflix product. It provides their members

Harshith VH 6 Jan 12, 2022
Module for automatic summarization of text documents and HTML pages.

Automatic text summarizer Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains sim

Mišo Belica 3k Jan 08, 2023
Simple GUI where you can enter an article and get a crisp summarized version.

Text-Summarization-using-TextRank-BART Simple GUI where you can enter an article and get a crisp summarized version. How to run: Clone the repo Instal

Rohit P 4 Sep 28, 2022
Residual2Vec: Debiasing graph embedding using random graphs

Residual2Vec: Debiasing graph embedding using random graphs This repository contains the code for S. Kojaku, J. Yoon, I. Constantino, and Y.-Y. Ahn, R

SADAMORI KOJAKU 5 Oct 12, 2022
This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

This project is part of Eleuther AI's quest to create a massive repository of high quality text data for training language models.

EleutherAI 42 Dec 13, 2022