Generate visualizations of GitHub user and repository statistics using GitHub Actions.

Overview

GitHub Stats Visualization

Generate visualizations of GitHub user and repository statistics using GitHub Actions.

This project is currently a work-in-progress; there will always be more interesting stats to display.

Background

When someone views a profile on GitHub, it is often because they are curious about a user's open source projects and contributions. Unfortunately, that user's stars, forks, and pinned repositories do not necessarily reflect the contributions they make to private repositories. The data likewise does not present a complete picture of the user's total contributions beyond the current year.

This project aims to collect a variety of profile and repository statistics using the GitHub API. It then generates images that can be displayed in repository READMEs, or in a user's Profile README.

Since the project runs on GitHub Actions, no server is required to regularly regenerate the images with updated statistics. Likewise, since the user runs the analysis code themselves via GitHub Actions, they can use their GitHub access token to collect statistics on private repositories that an external service would be unable to access.

Disclaimer

If the project is used with an access token that has sufficient permissions to read private repositories, it may leak details about those repositories in error messages. For example, the aiohttp library—used for asynchronous API requests—may include the requested URL in exceptions, which can leak the name of private repositories. If there is an exception caused by aiohttp, this exception will be viewable in the Actions tab of the repository fork, and anyone may be able to see the name of one or more private repositories.

Due to some issues with the GitHub statistics API, there are some situations where it returns inaccurate results. Specifically, the repository view count statistics and total lines of code modified are probably somewhat inaccurate. Unexpectedly, these values will become more accurate over time as GitHub caches statistics for your repositories. Additionally, repositories that were last contributed to more than a year ago may not be included in the statistics due to limitations in the results returned by the API.

For more information on inaccuracies, see issue #2, #3, and #13.

Installation

  1. Create a personal access token (not the default GitHub Actions token) using the instructions here. Personal access token must have permissions: read:user and repo. Copy the access token when it is generated – if you lose it, you will have to regenerate the token.
    • Some users are reporting that it can take a few minutes for the personal access token to work. For more, see #30.
  2. Click here to create a copy of this repository. Note: this is not the same as forking a copy because it copies everything fresh, without the huge commit history.
  3. If this is the README of your fork, click this link to go to the "Secrets" page. Otherwise, go to the "Settings" tab of the newly-created repository and go to the "Secrets" page (bottom left).
  4. Create a new secret with the name ACCESS_TOKEN and paste the copied personal access token as the value.
  5. It is possible to change the type of statistics reported.
    • To ignore certain repos, add them (in owner/name format e.g., jstrieb/github-stats) separated by commas to a new secret—created as before—called EXCLUDED.
    • To ignore certain languages, add them (separated by commas) to a new secret called EXCLUDED_LANGS.
    • To show statistics only for "owned" repositories and not forks with contributions, add an environment variable (under the env header in the main workflow) called EXCLUDE_FORKED_REPOS with a value of true.
  6. Go to the Actions Page and press "Run Workflow" on the right side of the screen to generate images for the first time. The images will be periodically generated every hour, but they can be manually regenerated by manually running the workflow.
  7. Check out the images that have been created in the generated folder.
  8. To add your statistics to your GitHub Profile README, copy and paste the following lines of code into your markdown content. Change the username value to your GitHub username.
    ![](https://github.com/username/github-stats/blob/master/generated/overview.svg)
    ![](https://github.com/username/github-stats/blob/master/generated/languages.svg)
  9. Link back to this repository so that others can generate their own statistics images.
  10. Star this repo if you like it!

Support the Project

There are a few things you can do to support the project:

  • Star the repository (and follow me on GitHub for more)
  • Share and upvote on sites like Twitter, Reddit, and Hacker News
  • Report any bugs, glitches, or errors that you find

These things motivate me to to keep sharing what I build, and they provide validation that my work is appreciated! They also help me improve the project. Thanks in advance!

If you are insistent on spending money to show your support, I encourage you to instead make a generous donation to one of the following organizations. By advocating for Internet freedoms, organizations like these help me to feel comfortable releasing work publicly on the Web.

Related Projects

Owner
JoelImgu
JoelImgu
Advanced hot reloading for Python

The missing element of Python - Advanced Hot Reloading Details Reloadium adds hot reloading also called "edit and continue" functionality to any Pytho

Reloadware 1.9k Jan 04, 2023
Interactive Data Visualization in the browser, from Python

Bokeh is an interactive visualization library for modern web browsers. It provides elegant, concise construction of versatile graphics, and affords hi

Bokeh 17.1k Dec 31, 2022
Getting started with Python, Dash and Plot.ly for the Data Dashboards team

data_dashboards Getting started with Python, Dash and Plot.ly for the Data Dashboards team Getting started MacOS users: # Install the pyenv version ma

Department for Levelling Up, Housing and Communities 1 Nov 08, 2021
Voilà, install macOS on ANY Computer! This is really and magic easiest way!

OSX-PROXMOX - Run macOS on ANY Computer - AMD & Intel Install Proxmox VE v7.02 - Next, Next & Finish (NNF). Open Proxmox Web Console - Datacenter N

Gabriel Luchina 654 Jan 09, 2023
PyFlow is a general purpose visual scripting framework for python

PyFlow is a general purpose visual scripting framework for python. State Base structure of program implemented, such things as packages disco

1.8k Jan 07, 2023
Visualize tensors in a plain Python REPL using Sparklines

Visualize tensors in a plain Python REPL using Sparklines

Shawn Presser 43 Sep 03, 2022
Implement the Perspective open source code in preparation for data visualization

Task Overview | Installation Instructions | Link to Module 2 Introduction Experience Technology at JP Morgan Chase Try out what real work is like in t

Abdulazeez Jimoh 1 Jan 23, 2022
Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns.

Make Complex Heatmaps Complex heatmaps are efficient to visualize associations between different sources of data sets and reveal potential patterns. H

Zuguang Gu 973 Jan 09, 2023
A Simple Flask-Plotly Example for NTU 110-1 DSSI Class

A Simple Flask-Plotly Example for NTU 110-1 DSSI Class Live Demo Prerequisites We will use Flask and Ploty to build a Flask application. If you haven'

Ting Ni Wu 1 Dec 11, 2021
3D plotting and mesh analysis through a streamlined interface for the Visualization Toolkit (VTK)

PyVista Deployment Build Status Metrics Citation License Community 3D plotting and mesh analysis through a streamlined interface for the Visualization

PyVista 1.6k Jan 08, 2023
Python toolkit for defining+simulating+visualizing+analyzing attractors, dynamical systems, iterated function systems, roulette curves, and more

Attractors A small module that provides functions and classes for very efficient simulation and rendering of iterated function systems; dynamical syst

1 Aug 04, 2021
A customized interface for single cell track visualisation based on pcnaDeep and napari.

pcnaDeep-napari A customized interface for single cell track visualisation based on pcnaDeep and napari. 👀 Under construction You can get test image

ChanLab 2 Nov 07, 2021
Open-source demos hosted on Dash Gallery

Dash Sample Apps This repository hosts the code for over 100 open-source Dash apps written in Python or R. They can serve as a starting point for your

Plotly 2.7k Jan 07, 2023
Bokeh Plotting Backend for Pandas and GeoPandas

Pandas-Bokeh provides a Bokeh plotting backend for Pandas, GeoPandas and Pyspark DataFrames, similar to the already existing Visualization feature of

Patrik Hlobil 822 Jan 07, 2023
Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js

pivottablejs: the Python module Drag’n’drop Pivot Tables and Charts for Jupyter/IPython Notebook, care of PivotTable.js Installation pip install pivot

Nicolas Kruchten 512 Dec 26, 2022
A python-generated website for visualizing the novel coronavirus (COVID-19) data for Greece.

COVID-19-Greece A python-generated website for visualizing the novel coronavirus (COVID-19) data for Greece. Data sources Data provided by Johns Hopki

Isabelle Viktoria Maciohsek 23 Jan 03, 2023
A Jupyter - Three.js bridge

pythreejs A Python / ThreeJS bridge utilizing the Jupyter widget infrastructure. Getting Started Installation Using pip: pip install pythreejs And the

Jupyter Widgets 844 Dec 27, 2022
Sky attention heatmap of submissions to astrometry.net

astroheat Installation Requires Python 3.6+, Tested with Python 3.9.5 Install library dependencies pip install -r requirements.txt The program require

4 Jun 20, 2022
metedraw is a project mainly for data visualization projects of Atmospheric Science, Marine Science, Environmental Science or other majors

It is mainly for data visualization projects of Atmospheric Science, Marine Science, Environmental Science or other majors.

Nephele 11 Jul 05, 2022
Some useful extensions for Matplotlib.

mplx Some useful extensions for Matplotlib. Contour plots for functions with discontinuities plt.contour mplx.contour(max_jump=1.0) Matplotlib has pro

Nico Schlömer 519 Dec 30, 2022